The Ssn6-Tup1 repressor complex of Saccharomyces cerevisiae is involved in the osmotic induction of HOG-dependent and -independent genes

被引:63
作者
Márquez, JA [1 ]
Pascual-Ahuir, A [1 ]
Proft, M [1 ]
Serrano, R [1 ]
机构
[1] Univ Politecn Valencia, CSIC, Inst Biol Mol & Celular Plantas, Valencia 46022, Spain
关键词
Hal1; HOG pathway; signal transduction; Ssn6; Tup1;
D O I
10.1093/emboj/17.9.2543
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The response of yeast to osmotic stress has been proposed to rely on the HOG-MAP kinase signalling pathway and on transcriptional activation mediated by STRE promoter elements. However, the osmotic induction of HAL1, an important determinant of salt tolerance, is HOG independent and occurs through the release of transcriptional repression. We have identified an upstream repressing sequence in HAL1 promoter (URSHAL1) located between -231 and -156. This promoter region was able to repress transcription from a heterologous promoter and to bind proteins in nonstressed cells, but not in salt-treated cells. The repression conferred by URSHAL1 is mediated through the Ssn6-Tup1 protein complex and is abolished in the presence of osmotic stress. The Ssn6-Tup1 co-repressor is also involved in the regulation of HOG-dependent genes such as GPD1, CTT1, ALD2, ENA1 and SIP18, and its deletion can suppress the osmotic sensitivity of hog1 mutants. We propose that the Ssn6-Tup1 repressor complex might be a general component in the regulation of osmostress responses at the transcriptional level of both HOG-dependent and -independent genes.
引用
收藏
页码:2543 / 2553
页数:11
相关论文
共 66 条
[1]   Osmoregulation and protein expression in a pbs2 Delta mutant of Saccharomyces cerevisiae during adaptation to hypersaline stress [J].
Akhtar, N ;
Blomberg, A ;
Adler, L .
FEBS LETTERS, 1997, 403 (02) :173-180
[2]   GPD1, WHICH ENCODES GLYCEROL-3-PHOSPHATE DEHYDROGENASE, IS ESSENTIAL FOR GROWTH UNDER OSMOTIC-STRESS IN SACCHAROMYCES-CEREVISIAE, AND ITS EXPRESSION IS REGULATED BY THE HIGH-OSMOLARITY GLYCEROL RESPONSE PATHWAY [J].
ALBERTYN, J ;
HOHMANN, S ;
THEVELEIN, JM ;
PRIOR, BA .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (06) :4135-4144
[3]  
[Anonymous], [No title captured]
[4]  
Ausubel FM., 1994, Curr. Protoc. Mol. Biol
[5]  
BELAZZI T, 1991, EMBO J, V10, P585, DOI 10.1002/j.1460-2075.1991.tb07985.x
[6]   REGULATION OF A YEAST HSP70 GENE BY A CAMP RESPONSIVE TRANSCRIPTIONAL CONTROL ELEMENT [J].
BOORSTEIN, WR ;
CRAIG, EA .
EMBO JOURNAL, 1990, 9 (08) :2543-2553
[7]   AN OSMOSENSING SIGNAL TRANSDUCTION PATHWAY IN YEAST [J].
BREWSTER, JL ;
DEVALOIR, T ;
DWYER, ND ;
WINTER, E ;
GUSTIN, MC .
SCIENCE, 1993, 259 (5102) :1760-1763
[8]   2 DIFFERENTIALLY REGULATED MESSENGER-RNAS WITH DIFFERENT 5' ENDS ENCODE SECRETED AND INTRACELLULAR FORMS OF YEAST INVERTASE [J].
CARLSON, M ;
BOTSTEIN, D .
CELL, 1982, 28 (01) :145-154
[9]   TRANSCRIPTION OF THE CONSTITUTIVELY EXPRESSED YEAST ENOLASE GENE ENO1 IS MEDIATED BY POSITIVE AND NEGATIVE CIS-ACTING REGULATORY SEQUENCES [J].
COHEN, R ;
YOKOI, T ;
HOLLAND, JP ;
PEPPER, AE ;
HOLLAND, MJ .
MOLECULAR AND CELLULAR BIOLOGY, 1987, 7 (08) :2753-2761
[10]  
DECKERT J, 1995, MOL CELL BIOL, V15, P6109