Crystal structure of the E-coli Hsp100 ClpB N-terminal domain

被引:44
作者
Li, JZ [1 ]
Sha, BD [1 ]
机构
[1] Univ Alabama Birmingham, Dept Cell Biol, Ctr Biophys Sci & Engn, Birmingham, AL 35294 USA
关键词
molecular chaperone; crystal structure; peptide binding; ClpB;
D O I
10.1016/S0969-2126(03)00030-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
E. coli Hsp100 ClpB can disaggregate denatured polypeptides by employing ATP hydrolysis. The ClpB N-terminal domain (ClpBN) has been proposed to play important roles in ClpB molecular chaperone activities. We have determined the crystal structure of ClpBN to 1.95 Angstrom resolution by MAD methods. The ClpBN monomer contains two subdomains that have similar folds. The crystal structure revealed a hydrophobic groove on the molecular surface. We have constructed ClpB mutants in which the hydrophobic residues within the putative peptide binding groove were replaced by glutamine. These ClpB mutants exhibited severe defects in molecular chaperone activity but retained the wild-type ATPase activity.
引用
收藏
页码:323 / 328
页数:6
相关论文
共 25 条
  • [1] Structure and activity of ClpB from Escherichia coli -: Role of the amino- and carboxyl-terminal domains
    Barnett, ME
    Zolkiewska, A
    Zolkiewski, M
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (48) : 37565 - 37571
  • [2] The structures of HsIU and ATP-dependent protease HsIU-HsIV
    Bochtler, M
    Hartmann, C
    Song, HK
    Bourenkov, GP
    Bartunik, HD
    Huber, R
    [J]. NATURE, 2000, 403 (6771) : 800 - 805
  • [3] Crystallography & NMR system:: A new software suite for macromolecular structure determination
    Brunger, AT
    Adams, PD
    Clore, GM
    DeLano, WL
    Gros, P
    Grosse-Kunstleve, RW
    Jiang, JS
    Kuszewski, J
    Nilges, M
    Pannu, NS
    Read, RJ
    Rice, LM
    Simonson, T
    Warren, GL
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 : 905 - 921
  • [4] Defining a pathway of communication from the C-terminal peptide binding domain to the N-terminal ATPase domain in a AAA protein
    Cashikar, AG
    Schirmer, EC
    Hattendorf, DA
    Glover, R
    Ramakrishnan, MS
    Ware, DM
    Lindquist, SL
    [J]. MOLECULAR CELL, 2002, 9 (04) : 751 - 760
  • [5] The truncated form of the bacterial heat shock protein ClpB/HSP100 contributes to development of thermotolerance in the cyanobacterium Synechococcus sp strain PCC 7942
    Clarke, AK
    Eriksson, MJ
    [J]. JOURNAL OF BACTERIOLOGY, 2000, 182 (24) : 7092 - 7096
  • [6] Hsp104, Hsp70, and Hsp40: A novel chaperone system that rescues previously aggregated proteins
    Glover, JR
    Lindquist, S
    [J]. CELL, 1998, 94 (01) : 73 - 82
  • [7] Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network
    Goloubinoff, P
    Mogk, A
    Ben Zvi, AP
    Tomoyasu, T
    Bukau, B
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (24) : 13732 - 13737
  • [8] GUO F, 2002, IN PRESS J BIOL CHEM
  • [9] SEARCHING PROTEIN-STRUCTURE DATABASES HAS COME OF AGE
    HOLM, L
    SANDER, C
    [J]. PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1994, 19 (03): : 165 - 173
  • [10] IMPROVED METHODS FOR BUILDING PROTEIN MODELS IN ELECTRON-DENSITY MAPS AND THE LOCATION OF ERRORS IN THESE MODELS
    JONES, TA
    ZOU, JY
    COWAN, SW
    KJELDGAARD, M
    [J]. ACTA CRYSTALLOGRAPHICA SECTION A, 1991, 47 : 110 - 119