Source identification of fine particles in Washington, DC, by expanded factor analysis modeling

被引:45
作者
Begum, BA
Hopke, PK [1 ]
Zhao, WX
机构
[1] Clarkson Univ, Dept Chem Engn, Potsdam, NY 13699 USA
[2] Atom Energy Ctr, Div Chem, Dhaka, Bangladesh
关键词
D O I
10.1021/es049804v
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
An expanded factor analysis model (ME-2) that is capable of taking into account the influence of independent variables such as wind speed, wind direction, time of year and other variables of the measured fine particle matter (PM2.5) concentration data was utilized for identifying sources of airborne pollutants and providing quantitative estimations of the contribution of each source. The chemical composition data used in this study were obtained from PM2.5 samples collected using the Interagency Monitoring of Protected Visual Environments samplers from August 1999 to December 2001 at an urban monitoring site in Washington, DC. The expanded model has been applied to two different data sets based on the particulate carbon variables. Such an approach had been successfully applied previously and provided improved source resolution in simulated and ambient concentration data. Initially, total OC and EC were used in the expanded model and were compared to the results using conventional positive matrix factorization that had been done previously using the individual carbon fractions data. In the other expanded model analysis, the eight carbon fractions were used during the modeling in order to ascertain if additional source information could be extracted from the data. In both cases, it was possible to separate diesel from spark-ignition vehicles. The use of the individual carbon fractions in the model provides information on what appears to be secondary organic aerosol formation.
引用
收藏
页码:1129 / 1137
页数:9
相关论文
共 47 条
[1]   Fine particle (PM2.5) personal exposure levels in transport microenvironments, London, UK [J].
Adams, HS ;
Nieuwenhuijsen, MJ ;
Colvile, RN ;
McMullen, MAS ;
Khandelwal, P .
SCIENCE OF THE TOTAL ENVIRONMENT, 2001, 279 (1-3) :29-44
[2]  
[Anonymous], 600A00048 EPA
[3]   Characteristics of the air pollution in the city of Dhaka, Bangladesh in winter [J].
Azad, AK ;
Kitada, T .
ATMOSPHERIC ENVIRONMENT, 1998, 32 (11) :1991-2005
[4]  
BEGUM BA, IN PRESS J AIR WASTE
[5]   Source apportionment of fine particulate matter by clustering single-particle data: Tests of receptor model accuracy [J].
Bhave, PV ;
Fergenson, DP ;
Prather, KA ;
Cass, GR .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2001, 35 (10) :2060-2072
[6]   THE DRI THERMAL OPTICAL REFLECTANCE CARBON ANALYSIS SYSTEM - DESCRIPTION, EVALUATION AND APPLICATIONS IN UNITED-STATES AIR-QUALITY STUDIES [J].
CHOW, JC ;
WATSON, JG ;
PRITCHETT, LC ;
PIERSON, WR ;
FRAZIER, CA ;
PURCELL, RG .
ATMOSPHERIC ENVIRONMENT PART A-GENERAL TOPICS, 1993, 27 (08) :1185-1201
[7]   Formation of secondary organic aerosols through photooxidation of isoprene [J].
Claeys, M ;
Graham, B ;
Vas, G ;
Wang, W ;
Vermeylen, R ;
Pashynska, V ;
Cafmeyer, J ;
Guyon, P ;
Andreae, MO ;
Artaxo, P ;
Maenhaut, W .
SCIENCE, 2004, 303 (5661) :1173-1176
[8]  
COSTA D, 1997, ENVIRON HEALTH PER S, V105, P97
[9]   Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources [J].
Davis, AP ;
Shokouhian, M ;
Ni, SB .
CHEMOSPHERE, 2001, 44 (05) :997-1009
[10]   Ultrafine (nanometre) particle mediated lung injury [J].
Donaldson, K ;
Li, XY ;
MacNee, W .
JOURNAL OF AEROSOL SCIENCE, 1998, 29 (5-6) :553-560