Interaction of water with a metal surface: Importance of van der Waals forces

被引:64
作者
Hamada, Ikutaro [1 ,2 ]
Lee, Kyuho [1 ,3 ]
Morikawa, Yoshitada [1 ,4 ]
机构
[1] Osaka Univ, Inst Sci & Ind Res, Osaka 5670047, Japan
[2] Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan
[3] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA
[4] Osaka Univ, Grad Sch Engn, Dept Precis Sci & Technol, Suita, Osaka 5650871, Japan
来源
PHYSICAL REVIEW B | 2010年 / 81卷 / 11期
基金
美国国家科学基金会;
关键词
GENERALIZED GRADIENT APPROXIMATION; DENSITY-FUNCTIONAL THEORY; ADSORPTION; 1ST-PRINCIPLES;
D O I
10.1103/PhysRevB.81.115452
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Choosing the water bilayer/Rh(111) interface as an example, we study the interaction of water with a metal surface, by taking into account the van der Waals (vdW) interactions using the vdW density functional (vdW-DF). There are two types of water in a water bilayer on the substrate, namely, chemisorbed and physisorbed ones. We show that for a chemisorbed water molecule, vdW-DF results agree well with those obtained using the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation. However, for a physisorbed water molecule, PBE severely underestimates the interaction energy. When we correctly include the vdW interaction, the relative strengths of the water-substrate and water-water interactions among different bilayer structures become comparable, and the water bilayer structures considered (H-up, buckled H-down, and H-flat water bilayers) become quasidegenerated, while PBE predicts one configuration more stable than the others. The structure of the water bilayer is determined by a delicate balance of Pauli repulsion and long-range vdW attractions in water-substrate and water-water interactions. Therefore, for the prediction of the water bilayer structure on the Rh(111) surface, it is important to describe Pauli repulsion and vdW interactions correctly.
引用
收藏
页数:6
相关论文
共 45 条
[1]   First-principles study of CO bonding to Pt(111): validity of the Blyholder model [J].
Aizawa, H ;
Tsuneyuki, S .
SURFACE SCIENCE, 1998, 399 (2-3) :L364-L370
[2]   The first layer of water on Rh(111): Microscopic structure and desorption kinetics [J].
Beniya, Atsushi ;
Yamamoto, Susumu ;
Mukai, Kozo ;
Yamashita, Yoshiyuki ;
Yoshinobu, Jun .
JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (05)
[3]   The growth process of first water layer and crystalline ice on the Rh(111) surface [J].
Beniya, Atsushi ;
Sakaguchi, Yuji ;
Narushima, Tetsuya ;
Mukai, Kozo ;
Yamashita, Yoshiyuki ;
Yoshimoto, Shinya ;
Yoshinobu, Jun .
JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (03)
[4]   GITTERPARAMETER VON EIS I BEI TIEFEN TEMPERATUREN [J].
BRILL, R ;
TIPPE, A .
ACTA CRYSTALLOGRAPHICA, 1967, 23 :343-+
[5]   The interplay between surface-water and hydrogen bonding in a water adlayer on Pt(111) and Ag(111) [J].
Delle Site, Luigi ;
Ghiringhelli, Luca M. ;
Andreussi, Oliviero ;
Donadio, Davide ;
Parrinello, Michele .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (24)
[6]   Van der Waals density functional for general geometries -: art. no. 246401 [J].
Dion, M ;
Rydberg, H ;
Schröder, E ;
Langreth, DC ;
Lundqvist, BI .
PHYSICAL REVIEW LETTERS, 2004, 92 (24) :246401-1
[7]   Lattice match in density functional calculations:: ice Ih vs. β-AgI [J].
Feibelman, Peter J. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (32) :4688-4691
[8]   Partial dissociation of water on Ru(0001) [J].
Feibelman, PJ .
SCIENCE, 2002, 295 (5552) :99-102
[9]   Using Ar adsorption to estimate the van der Waals contribution to the wetting of Ru(0001) [J].
Feibelman, PJ .
PHYSICAL REVIEW B, 2005, 72 (11)
[10]   Reactive wetting:: H2O/Rh(111) -: art. no. 186103 [J].
Feibelman, PJ .
PHYSICAL REVIEW LETTERS, 2003, 90 (18) :4