Bayesian variants of some classical semiparametric regression techniques

被引:40
作者
Koop, G
Poirier, DJ
机构
[1] Univ Leicester, Dept Econ, Leicester LE1 7RH, Leics, England
[2] Univ Calif Irvine, Dept Econ, Irvine, CA 92717 USA
关键词
partial linear model; additive nonparametric regression model; semiparametric probit; extreme bounds analysis;
D O I
10.1016/j.jeconom.2003.12.008
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper develops new Bayesian methods for semiparametric inference in the partial linear Normal regression model: y = zbeta + f (x) + e where f (.) is an unknown function. These methods draw solely on the Normal linear regression model with natural conjugate prior. Hence, posterior results are available which do not suffer from some problems which plague the existing literature such as computational complexity. Methods for testing parametric regression models against semiparametric alternatives are developed. We discuss how these methods can, at some cost in terms of computational complexity, be extended to other models (e.g. qualitative choice models or those involving censoring or truncation) and provide precise details for a semiparametric probit model. We show how the assumption of Normal errors can easily be relaxed. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:259 / 282
页数:24
相关论文
共 32 条
[1]  
BAUWENS L, 1991, ANN EC STAT, V23, P49
[2]  
CHAMBERLAIN G, 1976, J ROY STAT SOC B MET, V38, P73
[3]  
Dey DD, 1998, PRACTICAL NONPARAMET
[4]   On the use of panel data in stochastic frontier models with improper priors [J].
Fernandez, C ;
Osiewalski, J ;
Steel, MFJ .
JOURNAL OF ECONOMETRICS, 1997, 79 (01) :169-193
[5]  
Geweke J., 1986, Journal of Applied Econometrics, V1, P127, DOI [10.1002/jae.3950010203, DOI 10.1002/JAE.3950010203]
[6]  
GEWEKE J, 2000, ANAL PANELS LTD DEPE
[7]  
Green P. J., 1994, NONPARAMETRIC REGRES
[8]  
Greene W.H., 2000, ECONOMETRIC ANAL
[9]  
HARDLE W, 1994, HDB ECONOMETRICS, V4, pCH38
[10]  
Hardle W., 1990, Applied Nonparametric Regression