The crystal structure of the reduced, Zn2+-bound form of the B. subtilis Hsp33 chaperone and its implications for the activation mechanism

被引:60
作者
Janda, I
Devedjiev, Y
Derewenda, U
Dauter, Z
Bielnicki, J
Cooper, DR
Graf, PCF
Joachimiak, A
Jakob, U
Derewenda, ZS [1 ]
机构
[1] Univ Virginia, Dept Mol Physiol & Biol Phys, Charlottesville, VA 22908 USA
[2] Brookhaven Natl Lab, NCI, Macromol Crystallog Lab, Synchrotron Radiat Res Sect, Upton, NY 11973 USA
[3] Univ Michigan, Dept Mol Cellular & Dev Biol, Ann Arbor, MI 48109 USA
[4] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA
[5] Argonne Natl Lab, Struct Biol Ctr, Argonne, IL 60439 USA
关键词
D O I
10.1016/j.str.2004.08.003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The bacterial heat shock protein Hsp33 is a redox-regulated chaperone activated by oxidative stress. In response to oxidation, four cysteines within a Zn2+ binding C-terminal domain form two disulfide bonds with concomitant release of the metal. This leads to the formation of the biologically active Hsp33 dimer. The crystal structure of the N-terminal domain of the E. coli protein has been reported, but neither the structure of the Zn2+ binding motif nor the nature of its regulatory interaction with the rest of the protein are known. Here we report the crystal structure of the full-length B. subtilis Hsp33 in the reduced form. The structure of the N-terminal, dimerization domain is similar to that of the E. coli protein, although there is no domain swapping. The Zn2+ binding domain is clearly resolved showing the details of the tetrahedral coordination of Zn2+ by four thiolates. We propose a structure-based activation pathway for Hsp33.
引用
收藏
页码:1901 / 1907
页数:7
相关论文
共 29 条
[1]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[2]   Mass spectrometry unravels disulfide bond formation as the mechanism that activates a molecular chaperone [J].
Barbirz, S ;
Jakob, U ;
Glocker, MO .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (25) :18759-18766
[3]   Rational protein crystallization by mutational surface engineering [J].
Derewenda, ZS .
STRUCTURE, 2004, 12 (04) :529-535
[4]   Expression, purification, and crystallization of the RGS-like domain from the rho nucleotide exchange factor, PDZ-RhoGEF, using the surface entropy reduction approach [J].
Garrard, SM ;
Longenecker, KL ;
Lewis, ME ;
Sheffield, PJ ;
Derewenda, ZS .
PROTEIN EXPRESSION AND PURIFICATION, 2001, 21 (03) :412-416
[5]   Activation of the redox-regulated chaperone Hsp33 by domain unfolding [J].
Graf, PCF ;
Martinez-Yamout, M ;
VanHaerents, S ;
Lilie, H ;
Dyson, HJ ;
Jakob, U .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (19) :20529-20538
[6]   Redox-regulated molecular chaperones [J].
Graf, PCF ;
Jakob, U .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2002, 59 (10) :1624-1631
[7]   Activation of the redox-regulated molecular chaperone Hsp33 - A two-step mechanism [J].
Graumann, J ;
Lilie, H ;
Tang, XL ;
Tucker, KA ;
Hoffmann, JT ;
Vijayalakshmi, J ;
Saper, M ;
Bardwell, JCA ;
Jakob, U .
STRUCTURE, 2001, 9 (05) :377-387
[8]   The architecture of metal coordination groups in proteins [J].
Harding, MM .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 :849-859
[9]   Identification of a redox-regulated chaperone network [J].
Hoffmann, JH ;
Linke, K ;
Graf, PCF ;
Lilie, H ;
Jakob, U .
EMBO JOURNAL, 2004, 23 (01) :160-168
[10]   Chaperone activity with a redox switch [J].
Jakob, U ;
Muse, W ;
Eser, M ;
Bardwell, JCA .
CELL, 1999, 96 (03) :341-352