Complex metabolism of aromatic glucosinolates in Pieris rapae caterpillars involving nitrile formation, hydroxylation, demethylation, sulfation, and host plant dependent carboxylic acid formation

被引:36
作者
Agerbirk, Niels [1 ]
Olsen, Carl Erik [1 ]
Poulsen, Eva [1 ]
Jacobsen, Niels [1 ]
Hansen, Paul Robert [1 ]
机构
[1] Univ Copenhagen, Fac Life Sci, DK-1871 Frederiksberg C, Denmark
关键词
Carboxylic acid; Detoxification; Glucosinolate; Nitrilase; Nitrile; Nitrile-specifier protein; O-Demethylase; P450; Sulfate conjugate; ARABIDOPSIS-THALIANA; GENETIC-BASIS; EPITHIOSPECIFIER PROTEIN; INSECT RESISTANCE; ARMS-RACE; HERBIVORE; HYDROLYSIS; PERFORMANCE; EXPRESSION; DEFENSE;
D O I
10.1016/j.ibmb.2010.01.003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We investigated the metabolism of two chain elongated phenolic glucosinolates and the corresponding O-methyl derivatives upon ingestion by caterpillars of the butterfly Pieris rapae (L). The glucosinolates (GSLs) were 4-hydroxyphenethylGSL, (R)-2-hydroxy-2-(4-hydroxyphenyl)ethylGSL, 4-methoxyphenethylGSL, and (R)-2-hydroxy-2-(4-methoxyphenyl)ethylGSL, variously occurring in foliage of two Arabis species: Arabis hirsuta (L) Scop. and Arabis soyeri Reut. & Huet subsp. subcoriacea (Gren. ex Nyman) Breitstr. (Brassicaceae). Frass from caterpillars reared on each Arabis species contained two sulfated nitriles (4-sulfates of 3-(4-hydroxyphenyl)propanenitrile and 3-hydroxy-3-(4-hydroxyphenyl)propanenitrile) as apparent GSL metabolites. Comparison of glucosinolate levels in foliage and levels of sulfated nitriles in frass, and experiments with isolated GSLs spiked to crucifer foliage and ingested by P rapae, demonstrated that phenolic GSLs and the corresponding O-methyl derivatives were metabolised to sulfated nitriles, and that metabolites lacking a beta-hydroxy group were partially hydroxylated in this position during metabolism in P. rapae. In contrast, an induction experiment did not show increased levels of P-hydroxylated GSLs in A. soyeri plants upon caterpillar feeding. Frass contents of other putative GSL metabolites from the interaction with the two Arabis species differed significantly; caterpillars reared on A. hirsuta excreted significant amounts of four carboxylic acids (3-(4-hydroxyphenyl)propanoic acid, 3-hydroxy-3-(4-hydroxyphenyl)propanoic acid, and the corresponding 4-sulfates), which were low or absent when the caterpillars were reared on A. soyeri. The excreted carboxylic acids could be formed by hydrolysis of nitriles to carboxylic acids in caterpillar guts by an ingested nitrilase enzyme from A. hirsuta foliage; this hypothesis was supported by demonstration of 3-(4-hydroxyphenyl)propanenitrile hydrolysing nitrilase activity (E.C. 3.5.5.x) in a crude A. hirsuta extract. Some hypothetic metabolites, glycine conjugates of phenolic carboxylic acids, were not detected. Conditions for group separation and HPLC isolation of intact GSLs and sulfated metabolites were optimised, NMR spectroscopic data of the compounds are reported, and evolutionary and ecological implications are discussed. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:126 / 137
页数:12
相关论文
共 53 条
[1]   A common pathway for metabolism of 4-hydroxybenzylglucosinolate in Pieris and Anthocaris (Lepidoptera: Pieridae) [J].
Agerbirk, N ;
Müller, C ;
Olsen, CE ;
Chew, FS .
BIOCHEMICAL SYSTEMATICS AND ECOLOGY, 2006, 34 (03) :189-198
[2]   Glucosinolates, flea beetle resistance, and leaf pubescence as taxonomic characters in the genus Barbarea (Brassicaceae) [J].
Agerbirk, N ;
Orgaard, M ;
Nielsen, JK .
PHYTOCHEMISTRY, 2003, 63 (01) :69-80
[3]   Seasonal variation in leaf glucosinolates and insect resistance in two types of Barbarea vulgaris ssp arcuata [J].
Agerbirk, N ;
Olsen, CE ;
Nielsen, JK .
PHYTOCHEMISTRY, 2001, 58 (01) :91-100
[4]   Sinapis phylogeny and evolution of glucosinolates and specific nitrile degrading enzymes [J].
Agerbirk, Niels ;
Warwick, Suzanne I. ;
Hansen, Paul R. ;
Olsen, Carl E. .
PHYTOCHEMISTRY, 2008, 69 (17) :2937-2949
[5]   Host plant-dependent metabolism of 4-hydroxybenzylglucosinolate in Pieris rapae:: Substrate specificity and effects of genetic modification and plant nitrile hydratase [J].
Agerbirk, Niels ;
Olsen, Carl Erik ;
Topbjerg, Henrik Bak ;
Sorensen, Jens Christian .
INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2007, 37 (11) :1119-1130
[6]   Antiaphrodisiacs in pierid butterflies: A theme with variation! [J].
Andersson, J ;
Borg-Karlson, AK ;
Wiklund, C .
JOURNAL OF CHEMICAL ECOLOGY, 2003, 29 (06) :1489-1499
[7]  
[Anonymous], 1965, FLORA TURKEY E AEGEA
[8]   Metabolic engineering of p-hydroxybenzylglucosinolate in Arabidopsis by expression of the cyanogenic CYP79A1 from Sorghum bicolor [J].
Bak, S ;
Olsen, CE ;
Petersen, BL ;
Moller, BL ;
Halkier, BA .
PLANT JOURNAL, 1999, 20 (06) :663-671
[9]   Macroevolutionary chemical escalation in an ancient plant-herbivore arms race [J].
Becerra, Judith X. ;
Noge, Koji ;
Venable, D. Lawrence .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (43) :18062-18066
[10]   Screening crucifer seeds as sources of specific intact glucosinolates using ion-pair high-performance liquid chromatography negative ion electrospray mass spectrometry [J].
Bennett, RN ;
Mellon, FA ;
Kroon, PA .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2004, 52 (03) :428-438