Nonlinearities enhance parameter convergence in output-feedback systems

被引:49
作者
Lin, JS [1 ]
Kanellakopoulos, I [1 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
adaptive control; nonlinear systems; output-feedback form; parameter convergence;
D O I
10.1109/9.661068
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
While the parameter convergence properties of standard adaptive algorithms for linear systems are well established, there are no similar results on the parameter convergence of adaptive controllers for nonlinear systems which have gained popularity in recent years, In this paper we focus on a recently developed class of adaptive schemes for output-feedback nonlinear systems and show that parameter convergence is guaranteed if and only if an appropriately defined signal vector, which does not depend on closed-loop signals, is persistently exciting, Then we develop an analytic procedure which allows us, given a specific nonlinear system and a specific reference signal, to determine a priori whether or not this vector is persistently exciting (PE) and, hence, whether or not the parameter estimates will converge. In the process we show that the presence of nonlinearities usually reduces the sufficient richness (SR) requirements on the reference signals and hence enhances parameter convergence, This is the first result on the relationship between PE and SR for adaptive nonlinear control systems.
引用
收藏
页码:204 / 222
页数:19
相关论文
共 31 条
[1]   EXPONENTIAL STABILITY OF LINEAR EQUATIONS ARISING IN ADAPTIVE IDENTIFICATION [J].
ANDERSON, BDO .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1977, 22 (01) :83-88
[2]  
Astrom K. J., 1995, ADAPTIVE CONTROL
[3]   NECESSARY AND SUFFICIENT CONDITIONS FOR PARAMETER CONVERGENCE IN ADAPTIVE-CONTROL [J].
BOYD, S ;
SASTRY, SS .
AUTOMATICA, 1986, 22 (06) :629-639
[4]   ON PARAMETER CONVERGENCE IN ADAPTIVE-CONTROL [J].
BOYD, S ;
SASTRY, S .
SYSTEMS & CONTROL LETTERS, 1983, 3 (06) :311-319
[5]   PERSISTENT EXCITATION IN BILINEAR-SYSTEMS [J].
DASGUPTA, S ;
SHRIVASTAVA, Y ;
KRENZER, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (03) :305-313
[6]  
Dasgupta S., 1983, Proceedings of the 22nd IEEE Conference on Decision and Control, P211
[7]  
Dasgupta S., 1991, P 9 IFAC S ID BUD HU, VI, P374
[8]   FREQUENCY-DOMAIN CONDITIONS FOR PARAMETER CONVERGENCE IN MULTIVARIABLE RECURSIVE-IDENTIFICATION [J].
DEMATHELIN, M ;
BODSON, M .
AUTOMATICA, 1990, 26 (04) :757-767
[9]  
GLAD ST, 1990, PROCEEDINGS OF THE 29TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, P3236, DOI 10.1109/CDC.1990.203389
[10]  
Ioannou P. A., 1996, STABLE ROBUST ADAPTI