Treewidth computations I. Upper bounds

被引:107
作者
Bodlaender, Hans L. [2 ]
Koster, Arie M. C. A. [1 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math, D-52062 Aachen, Germany
[2] Univ Utrecht, Inst Informat & Comp Sci, NL-3508 TB Utrecht, Netherlands
基金
英国工程与自然科学研究理事会;
关键词
Treewidth; Upper bounds; Heuristics; Approximation algorithms; Graph algorithms; COMPUTING MINIMAL TRIANGULATIONS; MAXIMUM CARDINALITY SEARCH; LINEAR-TIME ALGORITHMS; GRAPHS; PATHWIDTH;
D O I
10.1016/j.ic.2009.03.008
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For more and more applications, it is important to be able to compute the treewidth of a given graph and to find tree decompositions of small width reasonably fast. This paper gives an overview of several upper bound heuristics that have been proposed and tested for the problem of determining the treewidth of a graph and finding tree decompositions. Each of the heuristics produces tree decompositions whose width may be larger than the optimal width However, experiments show that in many cases, the heuristics give tree decompositions whose width is close to the exact treewidth of the input graphs (C) 2009 Elsevier Inc. All rights reserved
引用
收藏
页码:259 / 275
页数:17
相关论文
共 96 条
[1]  
AMIR E, 2008, APPROXIMATION ALGORI
[2]  
Amir E., 2001, P 17 C UNCERTAINTY A, P7
[3]  
[Anonymous], 2005, Algorithm Design
[4]  
[Anonymous], 1985, Algorithmic Graph Theory
[5]  
[Anonymous], 1999, CRC DISCR MATH APPL
[6]  
[Anonymous], 2001, Introduction to Graph Theory
[7]  
[Anonymous], 1999, THESIS U MAASTRICHT
[8]   LINEAR TIME ALGORITHMS FOR NP-HARD PROBLEMS RESTRICTED TO PARTIAL K-TREES [J].
ARNBORG, S ;
PROSKUROWSKI, A .
DISCRETE APPLIED MATHEMATICS, 1989, 23 (01) :11-24
[9]  
ARNBORG S, 1985, BIT, V25, P2, DOI 10.1007/BF01934985
[10]  
Bachoore EH, 2005, LECT NOTES COMPUT SC, V3503, P216