A Bayesian approach to nonparametric bivariate regression

被引:30
作者
Smith, M [1 ]
Kohn, R
机构
[1] Monash Univ, Dept Econometr & Business Stat, Clayton, Vic 3168, Australia
[2] Univ New S Wales, Australian Grad Sch Management, Sydney, NSW 2052, Australia
关键词
Bayesian subset selection; Gibbs sampler; Markov chain Monte Carlo; robust regression; surface estimation; time series;
D O I
10.2307/2965423
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article outlines a general Bayesian approach to estimating a bivariate regression function in a nonparametric manner. It models the function using a bivariate regression spline basis with many terms. Binary indicator variables corresponding to these terms are introduced to explicitly model the uncertainty of whether or not the terms provide a significant contribution to the regression. The regression function is estimated using an estimate of its posterior mean, smoothing over the distribution of these binary indicator variables. To make the computations tractable, all estimates are obtained using Markov chain Monte Carlo sampling. Extensive simulated comparisons are provided that demonstrate the competitive performance of this approach against other data-driven bivariate surface estimators prominent in the literature. It is then shown how the procedure can be extended to provide a general approach to nonparametric bivariate surface estimation in two difficult regression settings. The first case allows for outlying values in the dependent variable. The second case considers data collected in time order with the errors potentially autocorrelated. Simulated and real data examples illustrate the effectiveness of the methodology in tackling such difficult problems.
引用
收藏
页码:1522 / 1535
页数:14
相关论文
共 25 条
[1]  
Akaike H., 1973, 2 INT S INFORM THEOR, P267, DOI [10.1007/978-1-4612-1694-0_15, DOI 10.1007/978-1-4612-1694-0_15]
[2]  
Box GE., 2011, BAYESIAN INFERENCE S
[3]  
BREIMAN L, 1985, J AM STAT ASSOC, V80, P580, DOI 10.2307/2288473
[4]  
Cleveland W. S., 1979, J AM STAT ASSOC, V74, P828
[5]  
Cleveland WilliamS., 1991, Statistics and Computing, V1, P47, DOI [10.1007/BF01890836, DOI 10.1007/BF01890836]
[6]  
de Boor C, 1987, GEOMETRIC MODELING A, P131
[7]  
de Boor C., 1978, PRACTICAL GUIDE SPLI, DOI DOI 10.1007/978-1-4612-6333-3
[8]   MULTIVARIATE ADAPTIVE REGRESSION SPLINES [J].
FRIEDMAN, JH .
ANNALS OF STATISTICS, 1991, 19 (01) :1-67
[9]  
FRIEDMAN JH, 1989, TECHNOMETRICS, V31, P3, DOI 10.2307/1270359
[10]   SAMPLING-BASED APPROACHES TO CALCULATING MARGINAL DENSITIES [J].
GELFAND, AE ;
SMITH, AFM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (410) :398-409