The transmembrane domains of the sensor kinase KdpD of Escherichia coli are not essential for sensing K+ limitation

被引:22
作者
Heermann, R [1 ]
Fohrmann, A [1 ]
Altendorf, K [1 ]
Jung, K [1 ]
机构
[1] Univ Osnabruck, Fachbereich Biol Chem, Abt Mikrobiol, D-49069 Osnabruck, Germany
关键词
D O I
10.1046/j.1365-2958.2003.03348.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The sensor kinase/response regulator system KdpD/KdpE of Escherichia coli regulates the expression of the kdpFABC operon, which encodes the high affinity K+ transport system KdpFABC. The membrane-bound sensor kinase KdpD consists of four transmembrane domains, a large cytoplasmic N-terminal domain and a cytoplasmic C-terminal transmitter domain. To elucidate the role of the four transmembrane domains, various deletions were introduced in kdpD and the activities of the resulting truncated derivatives of KdpD were determined. A KdpD protein lacking all four transmembrane domains was able to sense low K+ concentrations, whereas at higher K+ concentrations kdpFABC expression was constitutive. These and further results with various truncated KdpD proteins lacking distinct parts of the transmembrane domains or derivatives in which a linker peptide or two transmembrane domains of PutP, the Na+/proline transporter of Escherichia coli, replaced the missing part indicated that the transmembrane domains are not essential for sensing of K+ limitation, but may be important for the correct positioning of the large N- and C-terminal cytoplasmic domains to each other.
引用
收藏
页码:839 / 848
页数:10
相关论文
共 39 条