Plastic microfluidic devices modified with polyelectrolyte multilayers

被引:140
作者
Barker, SLR
Tarlov, MJ
Canavan, H
Hickman, JJ
Locascio, LE
机构
[1] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA
[2] George Washington Univ, Washington, DC 20052 USA
关键词
D O I
10.1021/ac000548o
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Control of the polymer surface chemistry is a crucial aspect of development of plastic microfluidic devices. When commercially available plastic substrates are used to fabricate microchannels, differences in the EOF mobility from plastic to plastic can be very high. Therefore, we have used polyelectrolyte multilayers (PEMs) to alter the surface of microchannels fabricated in plastics. Optimal modification of the microchannel surfaces was obtained by coating the channels with alternating layers of poly(allylamine hydrochloride) and poly(styrene sulfonate). Polystyrene (PS) and poly(ethylene terephthalate) glycol (PETG) were chosen las substrate materials because of the significant differences in the polymer chemistries and in the EOF of channels fabricated in these two plastic materials. The efficacy of the surface modification has been evaluated using XPS and by measuring the EOF mobility. When microchannels prepared in both PS and PETG are modified with PEMs, they demonstrate very similar electroosmotic mobilities. The PEMs are easily fabricated and provide a means for controlling the now direction and the electroosmotic mobility in the channels. The PEM-coated microchannels have excellent wettability, allowing facile filling of the channels. In addition, the PEMs produce reproducible results and are robust enough to withstand long-term storage.
引用
收藏
页码:4899 / 4903
页数:5
相关论文
共 24 条
  • [1] BARKER SLR, 1999, UNPUB
  • [2] BARKER SLR, 2000, UNPUB
  • [3] Characterization of polyelectrolyte-protein multilayer films by atomic force microscopy, scanning electron microscopy, and Fourier transform infrared reflection-absorption spectroscopy
    Caruso, F
    Furlong, DN
    Ariga, K
    Ichinose, I
    Kunitake, T
    [J]. LANGMUIR, 1998, 14 (16) : 4559 - 4565
  • [4] Investigation of electrostatic interactions in polyelectrolyte multilayer films:: Binding of anionic fluorescent probes to layers assembled onto colloids
    Caruso, F
    Lichtenfeld, H
    Donath, E
    Möhwald, H
    [J]. MACROMOLECULES, 1999, 32 (07) : 2317 - 2328
  • [5] Layer-by-layer deposition: A tool for polymer surface modification
    Chen, W
    McCarthy, TJ
    [J]. MACROMOLECULES, 1997, 30 (01) : 78 - 86
  • [6] Noncovalent polycationic coatings for capillaries in capillary electrophoresis of proteins
    Cordova, E
    Gao, JM
    Whitesides, GM
    [J]. ANALYTICAL CHEMISTRY, 1997, 69 (07) : 1370 - 1379
  • [7] Fuzzy nanoassemblies: Toward layered polymeric multicomposites
    Decher, G
    [J]. SCIENCE, 1997, 277 (5330) : 1232 - 1237
  • [8] Patterned delivery of immunoglobulins to surfaces using microfluidic networks
    Delamarche, E
    Bernard, A
    Schmid, H
    Michel, B
    Biebuyck, H
    [J]. SCIENCE, 1997, 276 (5313) : 779 - 781
  • [9] Dolník V, 2000, ELECTROPHORESIS, V21, P41, DOI 10.1002/(SICI)1522-2683(20000101)21:1<41::AID-ELPS41>3.0.CO
  • [10] 2-7