General transitivity conditions for fuzzy reciprocal preference matrices

被引:77
作者
Switalski, Z [1 ]
机构
[1] Univ Econ, Dept Operat Res, PL-60967 Poznan, Poland
关键词
fuzzy relations; psychometry and measurement; reciprocal preferences; transitivity; binary choice probabilities;
D O I
10.1016/S0165-0114(02)00434-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A reciprocal fuzzy matrix (relation) is a non-negative matrix Q = {q(ij)} such that q(ij) + q(ji) = 1 for all i, j is an element of {1, 2,..., n}. We define general transitivity conditions (named FG-transitivities) for fuzzy reciprocal preference relations and show that they generalize some well-known transitivities. We also study relationships of these conditions with two models of rational preferences (the so-called "utility" model and the "multidimensional" model). (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:85 / 100
页数:16
相关论文
共 34 条
[1]  
[Anonymous], 1980, MATH SCI HUMAINES
[2]  
BARRETT CR, 1985, ETHIK WIRTSCHAFTSWIS, V147, P69
[3]   FUZZY REVEALED PREFERENCE THEORY [J].
BASU, K .
JOURNAL OF ECONOMIC THEORY, 1984, 32 (02) :212-227
[4]  
Bezdek J. C., 1979, Fuzzy Sets and Systems, V2, P5, DOI 10.1016/0165-0114(79)90011-3
[5]  
BILLOT A, 1992, LECT NOTES EC MATH S, V373
[6]  
Blin J. M., 1973, Journal of Cybernetics, V3, P28, DOI 10.1080/01969727308545911
[7]   GENERALIZED TRANSITIVE TOURNAMENTS AND DOUBLY STOCHASTIC MATRICES [J].
BRUALDI, RA ;
HWANG, GS .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 172 :151-168
[8]   Characterizations of scoring methodsfor preference aggregation [J].
Pavel Yu. Chebotarev ;
Elena Shamis .
Annals of Operations Research, 1998, 80 (0) :299-332
[9]   Integrating three representation models in fuzzy multipurpose decision making based on fuzzy preference relations [J].
Chiclana, F ;
Herrera, F ;
Herrera-Viedma, E .
FUZZY SETS AND SYSTEMS, 1998, 97 (01) :33-48
[10]  
Cutello V, 2000, STUD FUZZ SOFT COMP, V51, P33