Acquired and R-gene-mediated resistance against the potato aphid in tomato

被引:94
作者
Cooper, WC [1 ]
Jia, L [1 ]
Goggin, FL [1 ]
机构
[1] Univ Arkansas, Dept Entomol, Fayetteville, AR 72701 USA
关键词
insect resistance; induced resistance; systemic acquired resistance; Mi; Meul; jasmonic acid; salicylic acid; benzothiadiazole; Homoptera; Aphididae;
D O I
10.1007/s10886-004-7948-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We examined the effects of three forms of host plant resistance in tomato, Lycopersicon esculentum, on the potato aphid, Macrosiphum euphorbiae. Mi-1.2, a resistance gene (R-gene) in tomato that deters aphid feeding, reduced the population growth of both potato aphid isolates tested, although it appeared to have a greater impact on isolate WU11 than on isolate WU12. The results suggest that there may be quantitative differences in virulence between these two aphid isolates. We also examined two distinct forms of acquired resistance in tomato, jasmonic acid (JA)-dependent and salicylic acid (SA)-dependent induced defenses. Exogenous foliar application of JA triggered expression of a JA-inducible proteinase inhibitor in tomato cultivars with and without Mi-1.2, although the effects of treatment on aphid performance differed between these cultivars. JA-treatment reduced aphid population growth on a susceptible tomato cultivar that lacks Mi-1.2, but did not significantly enhance or inhibit aphid control on a near-isogenic resistant tomato cultivar that carries this gene. Foliar application of an SA analog, benzothiadiazole (BTH), was used to induce SA-dependent defenses. BTH treatment reduced the population growth of both aphid isolates on a susceptible tomato cultivar, and also enhanced aphid control on a resistant cultivar. The results indicate that both SA and JA-dependent acquired resistance in tomato have a direct negative effect on a phloem-feeding insect. Furthermore, this study demonstrates that acquired resistance and R-gene-mediated resistance can interact for enhanced suppression of insect herbivores.
引用
收藏
页码:2527 / 2542
页数:16
相关论文
共 52 条
[1]   Salicylic acid is not required for Cf-2- and Cf-9-dependent resistance of tomato to Cladosporium fulvum [J].
Brading, PA ;
Hammond-Kosack, KE ;
Parr, A ;
Jones, JDG .
PLANT JOURNAL, 2000, 23 (03) :305-318
[2]   Salicylic acid is part of the Mi-1-mediated defense response to root-knot nematode in tomato [J].
Branch, C ;
Hwang, CF ;
Navarre, DA ;
Williamson, VM .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2004, 17 (04) :351-356
[3]   Resistance gene homologues in melon are linked to genetic loci conferring disease and pest resistance [J].
Brotman, Y ;
Silberstein, L ;
Kovalski, I ;
Perin, C ;
Dogimont, C ;
Pitrat, M ;
Klingler, J ;
Thompson, GA ;
Perl-Treves, R .
THEORETICAL AND APPLIED GENETICS, 2002, 104 (6-7) :1055-1063
[4]   Relationships between salicylic acid content, phenylalanine ammonia-lyase (PAL) activity, and resistance of barley to aphid infestation [J].
Chaman, ME ;
Copaja, SV ;
Argandoña, VH .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2003, 51 (08) :2227-2231
[5]   Aphid-induced defense responses in Mi-1-mediated compatible and incompatible tomato interactions [J].
de Ilarduya, OM ;
Xie, QG ;
Kaloshian, I .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2003, 16 (08) :699-708
[6]   A CENTRAL ROLE OF SALICYLIC-ACID IN PLANT-DISEASE RESISTANCE [J].
DELANEY, TP ;
UKNES, S ;
VERNOOIJ, B ;
FRIEDRICH, L ;
WEYMANN, K ;
NEGROTTO, D ;
GAFFNEY, T ;
GUTRELLA, M ;
KESSMANN, H ;
WARD, E ;
RYALS, J .
SCIENCE, 1994, 266 (5188) :1247-1250
[7]  
DOARES SH, 1995, PLANT PHYSIOL, P108
[8]   Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae [J].
Ellis, C ;
Karafyllidis, L ;
Turner, JG .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2002, 15 (10) :1025-1030
[9]  
FLOR HH, 1955, PHYTOPATHOLOGY, V45, P680
[10]  
FORSLUND K, 2000, PHYSIOL PLANTARUM, P110