Identification of plant promoter constituents by analysis of local distribution of short sequences

被引:134
作者
Yamamoto, Yoshiharu Y.
Ichida, Hiroyuki
Matsui, Minami
Obokata, Junichi
Sakurai, Tetsuya
Satou, Masakazu
Seki, Motoaki
Shinozaki, Kazuo
Abe, Tomoko
机构
[1] RIKEN, FRS, Applicat & Dev Grp, Wako, Saitama 3510198, Japan
[2] Nagoya Univ, Ctr Gene Res, Chikusa Ku, Nagoya, Aichi 4648602, Japan
[3] Chiba Univ, Grad Sch Sci & Technol, Matsudo, Chiba 2718510, Japan
[4] RIKEN, Genom Sci Ctr, Yokohama, Kanagawa 2300045, Japan
[5] RIKEN, Plant Sci ctr, Yokohama, Kanagawa 2300045, Japan
关键词
D O I
10.1186/1471-2164-8-67
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Plant promoter architecture is important for understanding regulation and evolution of the promoters, but our current knowledge about plant promoter structure, especially with respect to the core promoter, is insufficient. Several promoter elements including TATA box, and several types of transcriptional regulatory elements have been found to show local distribution within promoters, and this feature has been successfully utilized for extraction of promoter constituents from human genome. Results: LDSS (Local Distribution of Short Sequences) profiles of short sequences along the plant promoter have been analyzed in silico, and hundreds of hexamer and octamer sequences have been identified as having localized distributions within promoters of Arabidopsis thaliana and rice. Based on their localization patterns, the identified sequences could be classified into three groups, pyrimidine patch (Y Patch), TATA box, and REG (Regulatory Element Group). Sequences of the TATA box group are consistent with the ones reported in previous studies. The REG group includes more than 200 sequences, and half of them correspond to known cis-elements. The other REG subgroups, together with about a hundred uncategorized sequences, are suggested to be novel cis-regulatory elements. Comparison of LDSS-positive sequences between Arabidopsis and rice has revealed moderate conservation of elements and common promoter architecture. In addition, a dimer motif named the YR Rule (C/T A/G) has been identified at the transcription start site (-1/+1). This rule also fits both Arabidopsis and rice promoters. Conclusion: LDSS was successfully applied to plant genomes and hundreds of putative promoter elements have been extracted as LDSS-positive octamers. Identified promoter architecture of monocot and dicot are well conserved, but there are moderate variations in the utilized sequences.
引用
收藏
页数:23
相关论文
共 55 条
[1]   NUMBER OF CPG ISLANDS AND GENES IN HUMAN AND MOUSE [J].
ANTEQUERA, F ;
BIRD, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (24) :11995-11999
[2]  
Bailey T L, 1995, Proc Int Conf Intell Syst Mol Biol, V3, P21
[3]   Promoter prediction analysis on the whole human genome [J].
Bajic, VB ;
Tan, SL ;
Suzuki, Y ;
Sugano, S .
NATURE BIOTECHNOLOGY, 2004, 22 (11) :1467-1473
[4]   Performance assessment of promoter predictions on ENCODE regions in the EGASP experiment [J].
Bajic, Vladimir B. ;
Brent, Michael R. ;
Brown, Randall H. ;
Frankish, Adam ;
Harrow, Jennifer ;
Ohler, Uwe ;
Solovyev, Victor V. ;
Tan, Sin Lam .
GENOME BIOLOGY, 2006, 7 (Suppl 1)
[5]   The Arabidopsis genome:: A foundation for plant research [J].
Bevan, M ;
Walsh, S .
GENOME RESEARCH, 2005, 15 (12) :1632-1642
[6]   DNA methylation patterns and epigenetic memory [J].
Bird, A .
GENES & DEVELOPMENT, 2002, 16 (01) :6-21
[7]   Genome-wide computational prediction of transcriptional regulatory modules reveals new insights into human gene expression [J].
Blanchette, M ;
Bataille, AR ;
Chen, XY ;
Poitras, C ;
Laganière, J ;
Lefèbvre, C ;
Deblois, G ;
Giguère, V ;
Ferretti, V ;
Bergeron, D ;
Coulombe, B ;
Robert, FO .
GENOME RESEARCH, 2006, 16 (05) :656-668
[8]  
Buelow Lorenz, 2006, In Silico Biology, V6, P243
[9]   The RNA polymerase II core promoter: a key component in the regulation of gene expression [J].
Butler, JEF ;
Kadonaga, JT .
GENES & DEVELOPMENT, 2002, 16 (20) :2583-2592
[10]  
CAREY M, 2001, TRANSCRIPTIONAL REGU