Global analysis of protein sumoylation in Saccharomyces cerevisiae

被引:258
作者
Wohlschlegel, JA
Johnson, ES
Reed, SI
Yates, JR
机构
[1] Scripps Res Inst, Dept Cell Biol, La Jolla, CA 92037 USA
[2] Thomas Jefferson Univ, Dept Biochem & Mol Pharmacol, Philadelphia, PA 19107 USA
[3] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA
关键词
D O I
10.1074/jbc.M409203200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Although the modification of cellular factors by SUMO is an essential process in Saccharomyces cerevisiae, the identities of the substrates remain largely unknown. Using a mass spectrometry-based approach, we have identified 271 new SUMO targets. These substrates play roles in a diverse set of biological processes and greatly expand the scope of SUMO regulation in eukaryotic cells. Transcription appears to be the most prevalent process associated with sumoylation with novel SUMO substrates found in basal transcription machinery for RNA polymerases I, II, and III, pol II transcriptional elongation complexes, and a variety of chromatin remodeling, chromatin modifying, and chromatin silencing complexes. Additionally, our global analysis has revealed a number of interesting biological patterns in the list of SUMO targets including a clustering of sumoylation targets within macromolecular complexes.
引用
收藏
页码:45662 / 45668
页数:7
相关论文
共 38 条
[1]   The SUMO-1 isopeptidase Smt4 is linked to centromeric cohesion through SUMO-1 modification of DNA Topoisomerase II [J].
Bachant, J ;
Alcasabas, A ;
Blat, Y ;
Kleckner, N ;
Elledge, SJ .
MOLECULAR CELL, 2002, 9 (06) :1169-1182
[2]   Cdc14 and condensin control the dissolution of cohesin-independent chromosome linkages at repeated DNA [J].
D'Amours, D ;
Stegmeier, F ;
Amon, A .
CELL, 2004, 117 (04) :455-469
[3]   AN APPROACH TO CORRELATE TANDEM MASS-SPECTRAL DATA OF PEPTIDES WITH AMINO-ACID-SEQUENCES IN A PROTEIN DATABASE [J].
ENG, JK ;
MCCORMACK, AL ;
YATES, JR .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 1994, 5 (11) :976-989
[4]   Changes in the protein expression of yeast as a function of carbon source [J].
Gao, J ;
Opiteck, GJ ;
Friedrichs, MS ;
Dongre, AR ;
Hefta, SA .
JOURNAL OF PROTEOME RESEARCH, 2003, 2 (06) :643-649
[5]   Post-translational modification by the small ubiquitin-related modifier SUMO has big effects on transcription factor activity [J].
Gill, G .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2003, 13 (02) :108-113
[6]   RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO [J].
Hoege, C ;
Pfander, B ;
Moldovan, GL ;
Pyrowolakis, G ;
Jentsch, S .
NATURE, 2002, 419 (6903) :135-141
[7]   Global analysis of protein localization in budding yeast [J].
Huh, WK ;
Falvo, JV ;
Gerke, LC ;
Carroll, AS ;
Howson, RW ;
Weissman, JS ;
O'Shea, EK .
NATURE, 2003, 425 (6959) :686-691
[8]   Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins [J].
Johnson, ES ;
Blobel, G .
JOURNAL OF CELL BIOLOGY, 1999, 147 (05) :981-993
[9]   Protein modification by SUMO [J].
Johnson, ES .
ANNUAL REVIEW OF BIOCHEMISTRY, 2004, 73 :355-382
[10]   An E3-like factor that promotes SUMO conjugation to the yeast septins [J].
Johnson, ES ;
Gupta, AA .
CELL, 2001, 106 (06) :735-744