Accurate detection and genotyping of SNPs utilizing population sequencing data

被引:79
作者
Bansal, Vikas [1 ]
Harismendy, Olivier [1 ]
Tewhey, Ryan [1 ]
Murray, Sarah S. [1 ]
Schork, Nicholas J. [1 ]
Topol, Eric J. [1 ]
Frazer, Kelly A. [1 ]
机构
[1] Scripps Res Inst, Scripps Translat Sci Inst, Scripps Genom Med, La Jolla, CA 92037 USA
关键词
SHORT READ ALIGNMENT; HUMAN GENOME; RARE VARIANTS; CONTRIBUTE; IMPUTATION; ULTRAFAST; GENES; SETS;
D O I
10.1101/gr.100040.109
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Next-generation sequencing technologies have made it possible to sequence targeted regions of the human genome in hundreds of individuals. Deep sequencing represents a powerful approach for the discovery of the complete spectrum of DNA sequence variants in functionally important genomic intervals. Current methods for single nucleotide polymorphism (SNP) detection are designed to detect SNPs from single individual sequence data sets. Here, we describe a novel method SNIP-Seq (single nucleotide polymorphism identification from population sequence data) that leverages sequence data from a population of individuals to detect SNPs and assign genotypes to individuals. To evaluate our method, we utilized sequence data from a 200-kilobase (kb) region on chromosome 9p21 of the human genome. This region was sequenced in 48 individuals (five sequenced in duplicate) using the Illumina GA platform. Using this data set, we demonstrate that our method is highly accurate for detecting variants and can filter out false SNPs that are attributable to sequencing errors. The concordance of sequencing- based genotype assignments between duplicate samples was 98.8%. The 200-kb region was independently sequenced to a high depth of coverage using two sequence pools containing the 48 individuals. Many of the novel SNPs identified by SNIP-Seq from the individual sequencing were validated by the pooled sequencing data and were subsequently confirmed by Sanger sequencing. We estimate that SNIP-Seq achieves a low false-positive rate of similar to 2%, improving upon the higher false-positive rate for existing methods that do not utilize population sequence data. Collectively, these results suggest that analysis of population sequencing data is a powerful approach for the accurate detection of SNPs and the assignment of genotypes to individual samples.
引用
收藏
页码:537 / 545
页数:9
相关论文
共 28 条
[1]   Accurate whole human genome sequencing using reversible terminator chemistry [J].
Bentley, David R. ;
Balasubramanian, Shankar ;
Swerdlow, Harold P. ;
Smith, Geoffrey P. ;
Milton, John ;
Brown, Clive G. ;
Hall, Kevin P. ;
Evers, Dirk J. ;
Barnes, Colin L. ;
Bignell, Helen R. ;
Boutell, Jonathan M. ;
Bryant, Jason ;
Carter, Richard J. ;
Cheetham, R. Keira ;
Cox, Anthony J. ;
Ellis, Darren J. ;
Flatbush, Michael R. ;
Gormley, Niall A. ;
Humphray, Sean J. ;
Irving, Leslie J. ;
Karbelashvili, Mirian S. ;
Kirk, Scott M. ;
Li, Heng ;
Liu, Xiaohai ;
Maisinger, Klaus S. ;
Murray, Lisa J. ;
Obradovic, Bojan ;
Ost, Tobias ;
Parkinson, Michael L. ;
Pratt, Mark R. ;
Rasolonjatovo, Isabelle M. J. ;
Reed, Mark T. ;
Rigatti, Roberto ;
Rodighiero, Chiara ;
Ross, Mark T. ;
Sabot, Andrea ;
Sankar, Subramanian V. ;
Scally, Aylwyn ;
Schroth, Gary P. ;
Smith, Mark E. ;
Smith, Vincent P. ;
Spiridou, Anastassia ;
Torrance, Peta E. ;
Tzonev, Svilen S. ;
Vermaas, Eric H. ;
Walter, Klaudia ;
Wu, Xiaolin ;
Zhang, Lu ;
Alam, Mohammed D. ;
Anastasi, Carole .
NATURE, 2008, 456 (7218) :53-59
[2]   Multiple rare variants in NPC1L1 associated with reduced sterol absorption and plasma low-density lipoprotein levels [J].
Cohen, JC ;
Pertsemlidis, A ;
Fahmi, S ;
Esmail, S ;
Vega, GL ;
Grundy, SM ;
Hobbs, HH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (06) :1810-1815
[3]   Multiple rare Alleles contribute to low plasma levels of HDL cholesterol [J].
Cohen, JC ;
Kiss, RS ;
Pertsemlidis, A ;
Marcel, YL ;
McPherson, R ;
Hobbs, HH .
SCIENCE, 2004, 305 (5685) :869-872
[4]  
Craig DW, 2008, NAT METHODS, V5, P887, DOI [10.1038/nmeth.1251, 10.1038/NMETH.1251]
[5]   Substantial biases in ultra-short read data sets from high-throughput DNA sequencing [J].
Dohm, Juliane C. ;
Lottaz, Claudio ;
Borodina, Tatiana ;
Himmelbauer, Heinz .
NUCLEIC ACIDS RESEARCH, 2008, 36 (16)
[6]   Alta-Cyclic: a selfoptimizing base caller for next-generation sequencing [J].
Erlich, Yaniv ;
Mitra, Partha P. ;
delaBastide, Melissa ;
McCombie, W. Richard ;
Hannon, Gregory J. .
NATURE METHODS, 2008, 5 (08) :679-682
[7]   Single nucleotide variation analysis in 65 candidate genes for CNS disorders in a representative sample of the European population [J].
Freudenberg-Hua, Y ;
Freudenberg, J ;
Kluck, N ;
Cichon, S ;
Propping, P ;
Nöthen, MM .
GENOME RESEARCH, 2003, 13 (10) :2271-2276
[8]   Evaluation of next generation sequencing platforms for population targeted sequencing studies [J].
Harismendy, Olivier ;
Ng, Pauline C. ;
Strausberg, Robert L. ;
Wang, Xiaoyun ;
Stockwell, Timothy B. ;
Beeson, Karen Y. ;
Schork, Nicholas J. ;
Murray, Sarah S. ;
Topol, Eric J. ;
Levy, Samuel ;
Frazer, Kelly A. .
GENOME BIOLOGY, 2009, 10 (03)
[9]   Genome-wide in situ exon capture for selective resequencing [J].
Hodges, Emily ;
Xuan, Zhenyu ;
Balija, Vivekanand ;
Kramer, Melissa ;
Molla, Michael N. ;
Smith, Steven W. ;
Middle, Christina M. ;
Rodesch, Matthew J. ;
Albert, Thomas J. ;
Hannon, Gregory J. ;
McCombie, W. Richard .
NATURE GENETICS, 2007, 39 (12) :1522-1527
[10]   Rare independent mutations in renal salt handling genes contribute to blood pressure variation [J].
Ji, Weizhen ;
Foo, Jia Nee ;
O'Roak, Brian J. ;
Zhao, Hongyu ;
Larson, Martin G. ;
Simon, David B. ;
Newton-Cheh, Christopher ;
State, Matthew W. ;
Levy, Daniel ;
Lifton, Richard P. .
NATURE GENETICS, 2008, 40 (05) :592-599