Fractional tuning of the Riccati equation

被引:14
作者
Metzler, R
Glockle, WG
Nonnenmacher, TF
West, BJ
机构
[1] Univ Ulm, Dept Math Phys, D-89069 Ulm, Germany
[2] Univ N Texas, Ctr Nonlinear Sci, Denton, TX 76203 USA
来源
FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE | 1997年 / 5卷 / 04期
关键词
D O I
10.1142/S0218348X97000474
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The dynamics of a free-falling body in complex materials such as a polymer fluid is phenomenologically modeled using a fractional generalization of the Riccati equation. The solution exhibits a rich behavior in its parametric dependence, and unlike normal free-fall there is no terminal velocity, instead a power-law increase in time is obtained. Within this approach the fractional order allows to tune the resulting equation.
引用
收藏
页码:597 / 601
页数:5
相关论文
共 12 条
[1]  
[Anonymous], 1996, FRACTAL GEOMETRY ANA
[2]  
[Anonymous], 1962, Introduction to Nonlinear and Differential Integral Equations
[3]  
FORDY AP, 1990, SOLITON THEORY SURVE
[4]  
GLOCKLE WG, 1991, MACROMOLECULES, V24, P6426
[5]  
GORENFLO R, 1995, J FRACT CALC, V8, P103
[6]   Foundations of fractional dynamics [J].
Hilfer, R .
FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE, 1995, 3 (03) :549-556
[7]  
Keith Oldham., 1974, FRACTIONAL CALCULUS
[8]   FRACTIONAL MODEL EQUATION FOR ANOMALOUS DIFFUSION [J].
METZLER, R ;
GLOCKLE, WG ;
NONNENMACHER, TF .
PHYSICA A, 1994, 211 (01) :13-24
[9]   On the Riemann-Liouville fractional calculus and some recent applications [J].
Nonnenmacher, TF ;
Metzler, R .
FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE, 1995, 3 (03) :557-566
[10]   Generalized viscoelastic models: Their fractional equations with solutions [J].
Schiessel, H ;
Metzler, R ;
Blumen, A ;
Nonnenmacher, TF .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (23) :6567-6584