Ion selectivity from local configurations of ligands in solutions and ion channels

被引:76
作者
Asthagiri, D. [2 ,3 ]
Dixit, P. D. [2 ,3 ]
Merchant, S. [4 ]
Paulaitis, M. E. [4 ]
Pratt, L. R. [1 ]
Rempe, S. B. [5 ]
Varma, S. [5 ]
机构
[1] Tulane Univ, Dept Chem & Biomol Engn, New Orleans, LA 70118 USA
[2] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA
[3] Johns Hopkins Univ, Inst NanoBioTechnol, Baltimore, MD 21218 USA
[4] Ohio State Univ, Dept Chem & Biomol Engn, Columbus, OH 43210 USA
[5] Sandia Natl Labs, Ctr Biol & Mat Sci, Albuquerque, NM 87185 USA
关键词
FREE-ENERGIES; THERMODYNAMIC FUNCTIONS; TOPOLOGICAL CONTROL; POTASSIUM CHANNEL; HYDRATION NUMBER; MIXED-SOLVENTS; SINGLE IONS; WATER; SOLVATION; DYNAMICS;
D O I
10.1016/j.cplett.2009.12.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Probabilities of numbers of ligands proximal to an ion lead to simple, general formulae for the free energy of ion selectivity between different media. That free energy does not depend on the definition of an inner shell for ligand-counting, but other quantities of mechanistic interest do. If analysis is restricted to a specific coordination number, then two distinct probabilities are required to obtain the free energy in addition. The normalizations of those distributions produce partition function formulae for the free energy. Quasi-chemical theory introduces concepts of chemical equilibrium, then seeks the probability that is simplest to estimate, that of the most probable coordination number. Quasi-chemical theory establishes the utility of distributions of ligand-number, and sharpens our understanding of quasi-chemical calculations based on electronic structure methods. This development identifies contributions with clear physical interpretations, and shows that evaluation of those contributions can establish a mechanistic understanding of the selectivity in ion channels. (C) 2009 Elsevier B. V. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 51 条
[1]  
[Anonymous], 2007, Free energy calculations: Theory and applications in chemistry and biology
[2]  
[Anonymous], J CHEM PHYS
[3]  
[Anonymous], 1964, Monte Carlo Methods, DOI DOI 10.1007/978-94-009-5819-7
[4]   Colloquium:: Scaled particle theory and the length scales of hydrophobicity [J].
Ashbaugh, HS ;
Pratt, LR .
REVIEWS OF MODERN PHYSICS, 2006, 78 (01) :159-178
[5]   Non-van der waals treatment of the hydrophobic solubilities of CF4 [J].
Asthagiri, D. ;
Ashbaugh, H. S. ;
Piryatinski, A. ;
Paulaitis, M. E. ;
Pratt, L. R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (33) :10133-10140
[6]   Role of fluctuations in a snug-fit mechanism of KcsA channel selectivity [J].
Asthagiri, D. ;
Pratt, Lawrence R. ;
Paulaitis, Michael E. .
JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (02)
[7]   Hydration structure and free energy of biomolecularly specific aqueous dications, including Zn2+ and first transition row metals [J].
Asthagiri, D ;
Pratt, LR ;
Paulaitis, ME ;
Rempe, SB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (04) :1285-1289
[8]   Absolute hydration free energies of ions, ion-water clusters, and quasichemical theory [J].
Asthagiri, D ;
Pratt, LR ;
Ashbaugh, HS .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (05) :2702-2708
[9]  
Beck TL, 2006, The Potential Distribution Theorem and Models of Molecular Solutions
[10]   Selectivity in K+ channels is due to topological control of the permeant ion's coordinated state [J].
Bostick, David L. ;
Brooks, Charles L., III .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (22) :9260-9265