Delayed transplantation of olfactory ensheathing glia promotes sparing/regeneration of supraspinal axons in the contused adult rat spinal cord

被引:158
作者
Plant, GW
Christensen, CL
Oudega, M
Bunge, MB
机构
[1] Univ Western Australia, Sch Anat & Human Biol, Collaborat Training & Educ Ctr, Reds Spinal Cord Res Lab, Perth, WA 6009, Australia
[2] Univ Western Australia, Western Australia Inst Med Res, Perth, WA 6009, Australia
[3] Univ Miami, Sch Med, Dept Neurol Surg, Miami, FL 33136 USA
[4] Univ Miami, Sch Med, Dept Cell Biol & Anat, Miami, FL 33101 USA
[5] Univ Miami, Sch Med, Chambers Family Electron Microscopy Lab, Miami Project Cure Paralysis, Miami, FL 33101 USA
关键词
CNS regeneration; hindlimb locomotion; paraplegia; spinal cord injury; supraspinal axons;
D O I
10.1089/08977150360517146
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
The aim of this study was to determine the preferred time and environment for transplantation of olfactory ensheathing glia (OEG) into the moderately contused adult rat thoracic spinal cord. Purified OEG were suspended in culture medium with or without fibrinogen and injected into the contused cord segment at 30 min or 7 days after injury. Control animals received a contusion injury only or injection of only medium 7 days after contusion. The effects on axonal sparing/regeneration and functional recovery were evaluated 8 weeks after injury. The grafts largely filled the lesion site, reducing cavitation, and appeared continuous with the spinal nervous tissue. Whereas in 7d/medium only animals, 54% of spinal tissue within a 2.5-mm-long segment of cord centered at the injury site was spared, significantly more tissue was spared in 0 d/OEG-medium (73%), 0 d/OEG-fibrin (66%), 7 d/OEG-medium (70%), and 7 d/OEG-fibrin (68%) grafted animals. Compared with controls, the grafted animals exhibited more serotonergic axons within the transplant, the surrounding white matter, and the spinal cord up to at least 20 mm caudal to the graft. Retrograde tracing revealed that all but the 0 d/OEG-fibrin graft promoted sparing/regeneration of supraspinal axons compared with controls. Overall, the 7 d/OEG-medium group resulted in the best response, with twice as many labeled neurons in the brain compared with 7 d/medium only controls. Of the labeled neurons, 68% were located in the reticular formation, and 4% in the red, 4% in the raphe, and 5% in the vestibular nuclei. Hindlimb performance was modestly but significantly improved in the 7 d/OEG-medium group. Our results demonstrate that transplantation of OEG into the moderately contused adult rat thoracic spinal cord promotes sparing/regeneration of supraspinal axons and that 7 d transplantation is more effective than acute transplantation of OEG. Our results have relevant implications for future surgical repair strategies of the contused spinal cord.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 69 条
[1]   Pegylated brain-derived neurotrophic factor shows improved distribution into the spinal cord and stimulates locomotor activity and morphological changes after injury [J].
Ankeny, DP ;
McTigue, DM ;
Guan, Z ;
Yan, Q ;
Kinstler, O ;
Stokes, BT ;
Jakeman, LB .
EXPERIMENTAL NEUROLOGY, 2001, 170 (01) :85-100
[2]   Neurotrophins BDNF and NT-3 promote axonal re-entry into the distal host spinal cord through Schwann cell-seeded mini-channels [J].
Bamber, NI ;
Li, HY ;
Lu, XB ;
Oudega, M ;
Aebischer, P ;
Xu, XM .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2001, 13 (02) :257-268
[3]   Identification of a human olfactory ensheathing cell that can effect transplant-mediated remyelination of demyelinated CNS axons [J].
Barnett, SC ;
Alexander, CL ;
Iwashita, Y ;
Gilson, JM ;
Crowther, J ;
Clark, L ;
Dunn, LT ;
Papanastassiou, V ;
Kennedy, PGE ;
Franklin, RJM .
BRAIN, 2000, 123 :1581-1588
[4]   A SENSITIVE AND RELIABLE LOCOMOTOR RATING-SCALE FOR OPEN-FIELD TESTING IN RATS [J].
BASSO, DM ;
BEATTIE, MS ;
BRESNAHAN, JC .
JOURNAL OF NEUROTRAUMA, 1995, 12 (01) :1-21
[5]   Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection [J].
Basso, DM ;
Beattie, MS ;
Bresnahan, JC .
EXPERIMENTAL NEUROLOGY, 1996, 139 (02) :244-256
[6]   Endogenous repair after spinal cord contusion injuries in the rat [J].
Beattie, MS ;
Bresnahan, JC ;
Komon, J ;
Tovar, CA ;
Van Meter, M ;
Anderson, DK ;
Faden, AI ;
Hsu, CY ;
Noble, LJ ;
Salzman, S ;
Young, W .
EXPERIMENTAL NEUROLOGY, 1997, 148 (02) :453-463
[7]   CENTRAL AXONS IN INJURED CAT SPINAL-CORD RECOVER ELECTROPHYSIOLOGICAL FUNCTION FOLLOWING REMYELINATION BY SCHWANN-CELLS [J].
BLIGHT, AR ;
YOUNG, W .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 1989, 91 (1-2) :15-34
[8]  
Boruch AV, 2001, GLIA, V33, P225, DOI 10.1002/1098-1136(200103)33:3<225::AID-GLIA1021>3.0.CO
[9]  
2-Y
[10]   RUBROSPINAL PROJECTIONS IN RAT [J].
BROWN, LT .
JOURNAL OF COMPARATIVE NEUROLOGY, 1974, 154 (02) :169-187