Seed size strongly affects cascades on random networks

被引:178
作者
Gleeson, James P. [1 ]
Cahalane, Diarmuid J.
机构
[1] Natl Univ Ireland Univ Coll Cork, Cork, Ireland
[2] Natl Univ Ireland Univ Coll Cork, MACSI, Cork, Ireland
关键词
D O I
10.1103/PhysRevE.75.056103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The average avalanche size in the Watts model of threshold dynamics on random networks of arbitrary degree distribution is determined analytically. Existence criteria for global cascades are shown to depend sensitively on the size of the initial seed disturbance. The dependence of cascade size upon the mean degree z of the network is known to exhibit several transitions-these are typically continuous at low z and discontinuous at high z; here it is demonstrated that the low-z transition may in fact be discontinuous in certain parameter regimes. Connections between these results and the zero-temperature random-field Ising model on random graphs are discussed.
引用
收藏
页数:4
相关论文
共 26 条
[1]   Complex networks - Augmenting the framework for the study of complex systems [J].
Amaral, LAN ;
Ottino, JM .
EUROPEAN PHYSICAL JOURNAL B, 2004, 38 (02) :147-162
[2]  
[Anonymous], 2019, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
[3]   Evolutionary dynamics on degree-heterogeneous graphs [J].
Antal, T. ;
Redner, S. ;
Sood, V. .
PHYSICAL REVIEW LETTERS, 2006, 96 (18)
[4]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[5]   Cascade dynamics of complex propagation [J].
Centola, Damon ;
Eguiluz, Victor M. ;
Macy, Michael W. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 374 (01) :449-456
[6]   Model for cascading failures in complex networks [J].
Crucitti, P ;
Latora, V ;
Marchiori, M .
PHYSICAL REVIEW E, 2004, 69 (04) :4
[7]   Zero-temperature hysteresis in the random-field Ising model on a Bethe lattice [J].
Dhar, D ;
Shukla, P ;
Sethna, JP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (15) :5259-5267
[8]   Universal behavior in a generalized model of contagion [J].
Dodds, PS ;
Watts, DJ .
PHYSICAL REVIEW LETTERS, 2004, 92 (21) :218701-1
[9]   Evolution of networks [J].
Dorogovtsev, SN ;
Mendes, JFF .
ADVANCES IN PHYSICS, 2002, 51 (04) :1079-1187
[10]   Efficient target strategies for contagion in scale-free networks [J].
Duan, WQ ;
Chen, Z ;
Liu, ZR ;
Jin, W .
PHYSICAL REVIEW E, 2005, 72 (02)