Zinc finger transcription factors in skeletal development

被引:59
作者
Ganss, B [1 ]
Jheon, A [1 ]
机构
[1] Univ Toronto, Fac Dent, CIHR Grp Matrix Dynam, Toronto, ON M5S 3E2, Canada
关键词
zinc finger; transcription; bone; cartilage; teeth;
D O I
10.1177/154411130401500504
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Cellular and molecular processes that regulate the development of skeletal tissues resemble those required for regeneration. Given the prevalence of degenerative skeletal disorders in an increasingly aging population, the molecular mechanisms of skeletal development must be understood in detail if novel strategies are to be developed in regenerative medicine. Research in this area over the past decade has revealed that cell differentiation is largely controlled at the level of gene transcription, which in turn is regulated by transcription factors. Transcription factors usually recognize and bind to specific DNA sequences in the promoter of target genes via characteristic DNA-binding domains. Although the gene family containing C2H2 zinc fingers as DNA-binding motifs is the largest family of transciptional regulators, with several hundred individual members in mammals, only a small but increasing number of zinc finger genes have been implicated in bone, cartilage, or tooth development. These zinc finger proteins (ZFPs) contain multiple structural motifs that require zinc to maintain their structural integrity and function. Interestingly, zinc deficiency is known to result in skeletal growth retardation and has been identified as a risk factor in the pathogenesis of osteoporosis. This review attempts to summarize our current state of knowledge regarding the role of ZFPs in the molecular regulation of skeletogenesis.
引用
收藏
页码:282 / 297
页数:16
相关论文
共 198 条
[1]   THE PHD FINGER - IMPLICATIONS FOR CHROMATIN-MEDIATED TRANSCRIPTIONAL REGULATION [J].
AASLAND, R ;
GIBSON, TJ ;
STEWART, AF .
TRENDS IN BIOCHEMICAL SCIENCES, 1995, 20 (02) :56-59
[2]  
Altaba ARI, 1998, DEVELOPMENT, V125, P2203
[3]   THE DROSOPHILA SCHNURRI GENE ACTS IN THE DPP/TGF-BETA SIGNALING PATHWAY AND ENCODES A TRANSCRIPTION FACTOR HOMOLOGOUS TO THE HUMAN MBP FAMILY [J].
ARORA, K ;
DAI, H ;
KAZUKO, SG ;
JAMAL, J ;
OCONNOR, MB ;
LETSOU, A ;
WARRIOR, R .
CELL, 1995, 81 (05) :781-790
[4]   Characterization of the transcriptional regulator YY1 - The bipartite transactivation domain is independent of interaction with the TATA box-binding protein, transcription factor IIB, TAF(II)55, or cAMP-responsive element-binding protein (CBP)-binding protein [J].
Austen, M ;
Luscher, B ;
LuscherFirzlaff, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (03) :1709-1717
[5]  
Aza-Blanc P, 2000, DEVELOPMENT, V127, P4293
[6]  
Barry Frank P, 2003, Novartis Found Symp, V249, P86
[7]   Positive and negative regulation of endogenous genes by designed transcription factors [J].
Beerli, RR ;
Dreier, B ;
Barbas, CF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (04) :1495-1500
[8]   THE EVOLUTIONARILY CONSERVED KRUPPEL-ASSOCIATED BOX DOMAIN DEFINES A SUBFAMILY OF EUKARYOTIC MULTIFINGERED PROTEINS [J].
BELLEFROID, EJ ;
PONCELET, DA ;
LECOCQ, PJ ;
REVELANT, O ;
MARTIAL, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (09) :3608-3612
[9]   The galvanization of biology: A growing appreciation for the roles of zinc [J].
Berg, JM ;
Shi, YG .
SCIENCE, 1996, 271 (5252) :1081-1085
[10]   EXPRESSION AND LOCALIZATION OF THE 2 SMALL PROTEOGLYCANS BIGLYCAN AND DECORIN IN DEVELOPING HUMAN SKELETAL AND NONSKELETAL TISSUES [J].
BIANCO, P ;
FISHER, LW ;
YOUNG, MF ;
TERMINE, JD ;
ROBEY, PG .
JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY, 1990, 38 (11) :1549-1563