Continuous time random walks on moving fluids

被引:73
作者
Compte, A
机构
[1] Departament de Física, Física Estadística, Universitat Aut`onoma de Barcelona, Bellaterra, Catalonia
关键词
D O I
10.1103/PhysRevE.55.6821
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The scheme of the continuous time random walk (CTRW) is generalized to include the possibility of a moving background. It is shown that this generalization reproduces in the macroscopic limit the usual diffusion-advection equation and the properties of standard diffusion in a shear flow. The new formalism is then used to derive the corresponding macroscopic equation for CTRW's with infinite mean squared step length and with infinite mean waiting time in a moving fluid. For these two CTRW's we finally include an analysis of the dispersion in three different two-dimensional linear shear flows.
引用
收藏
页码:6821 / 6831
页数:11
相关论文
共 31 条
  • [1] FRACTIONAL DIFFUSION EQUATION FOR FRACTAL-TIME CONTINUOUS-TIME RANDOM-WALKS
    ALEMANY, PA
    [J]. CHAOS SOLITONS & FRACTALS, 1995, 6 (Suppl) : 7 - 10
  • [2] [Anonymous], 1980, Gos. Izd-vo Fiz.-Mat. Literatury
  • [3] ANOMALOUS TRANSPORT IN TURBULENT PLASMAS AND CONTINUOUS-TIME RANDOM-WALKS
    BALESCU, R
    [J]. PHYSICAL REVIEW E, 1995, 51 (05) : 4807 - 4822
  • [4] CHERIF M, IN PRESS C R ACAD SC
  • [5] CHUKBAR KV, 1996, SOV PHYS JETP, V82, P719
  • [6] CHUKBAR KV, 1995, SOV PHYS JETP, V81, P1025
  • [7] Stochastic foundations of fractional dynamics
    Compte, A
    [J]. PHYSICAL REVIEW E, 1996, 53 (04): : 4191 - 4193
  • [8] Anomalous diffusion in linear shear flows
    Compte, A
    Jou, D
    Katayama, Y
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (04): : 1023 - 1030
  • [9] DIFFUSION OF BROWNIAN PARTICLES IN SHEAR FLOWS
    FOISTER, RT
    VANDEVEN, TGM
    [J]. JOURNAL OF FLUID MECHANICS, 1980, 96 (JAN) : 105 - 132
  • [10] LEVY WALK IN LATTICE-GAS HYDRODYNAMICS
    HAYOT, F
    [J]. PHYSICAL REVIEW A, 1991, 43 (02): : 806 - 810