Stable carbon isotopic evidence for methane oxidation in plumes above Hydrate Ridge, Cascadia Oregon Margin

被引:66
作者
Grant, NJ [1 ]
Whiticar, MJ [1 ]
机构
[1] Univ Victoria, Sch Earth & Ocean Sci, Victoria, BC V8W 3P6, Canada
关键词
Hydrate Ridge; Cascadia Oregon Margin; cold seeps; hydrates; methane oxidation; stable carbon isotopes;
D O I
10.1029/2001GB001851
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
[1] The transport and consumption of methane in the water column in the vicinity of the cold seeps of Hydrate Ridge on the Cascadia Oregon Margin were characterized using measurements of the stable carbon isotope composition of methane. The delta(13)C-CH4 values measured in the water column ranged from approximately -65 to -16parts per thousand, PDB. The combination of measured methane concentration data and the stable carbon isotope values from the same depths support the hypothesis of biogenically produced methane which enters the water column from dissolving bubbles released from cold seepages, likely as a consequence of destabilized methane hydrate (delta(13)C-CH4 = 65parts per thousand, PDB). Kinetic fractionation factors, a, associated with aerobic bacterial methane oxidation in the water column were calculated using a Rayleigh distillation equation applied to a subset of the data. Fractionation factors ranged from 1.002 to 1.013 (mean = 1.008) and were in the lower end of the range of those reported in the literature, a result likely due to the influence of temperature and mixing in plume waters. The fraction of methane remaining after oxidation calculated using the same Rayleigh model approach suggests that the aerobic oxidation of methane in the water column over Hydrate Ridge is nearly quantitative.
引用
收藏
页数:13
相关论文
共 74 条
[1]   FACTORS THAT CONTROL THE STABLE CARBON ISOTOPIC COMPOSITION OF METHANE PRODUCED IN AN ANOXIC MARINE SEDIMENT [J].
Alperin, M. ;
Blair, N. ;
Albert, D. ;
Hoehler, T. ;
Martens, C. .
GLOBAL BIOGEOCHEMICAL CYCLES, 1992, 6 (03) :271-291
[2]   CARBON AND HYDROGEN ISOTOPE FRACTIONATION RESULTING FROM ANAEROBIC METHANE OXIDATION [J].
Alperin, M. ;
Reeburgh, W. ;
Whiticar, M. .
GLOBAL BIOGEOCHEMICAL CYCLES, 1988, 2 (03) :279-288
[3]   METHANE IN THE BALTIC AND NORTH SEAS AND A REASSESSMENT OF THE MARINE EMISSIONS OF METHANE [J].
BANGE, HW ;
BARTELL, UH ;
RAPSOMANIKIS, S ;
ANDREAE, MO .
GLOBAL BIOGEOCHEMICAL CYCLES, 1994, 8 (04) :465-480
[4]  
Barber R.T., 1981, P31
[5]   CARBON ISOTOPE FRACTIONATION DURING MICROBIAL METHANE OXIDATION [J].
BARKER, JF ;
FRITZ, P .
NATURE, 1981, 293 (5830) :289-291
[6]   A reevaluation of the open ocean source of methane to the atmosphere [J].
Bates, TS ;
Kelly, KC ;
Johnson, JE ;
Gammon, RH .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D3) :6953-6961
[7]   FLUID-FLOW AND MASS FLUX DETERMINATIONS AT VENT SITES ON THE CASCADIA MARGIN ACCRETIONARY PRISM [J].
CARSON, B ;
SUESS, E ;
STRASSER, JC .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1990, 95 (B6) :8891-8897
[8]   METHANE TRANSPORT MECHANISMS AND ISOTOPIC FRACTIONATION IN EMERGENT MACROPHYTES OF AN ALASKAN TUNDRA LAKE [J].
CHANTON, JP ;
MARTENS, CS ;
KELLEY, CA ;
CRILL, PM ;
SHOWERS, WJ .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1992, 97 (D15) :16681-16688
[9]   BIOGEOCHEMICAL ASPECTS OF ATMOSPHERIC METHANE [J].
Cicerone, R. ;
Oremland, R. .
GLOBAL BIOGEOCHEMICAL CYCLES, 1988, 2 (04) :299-327
[10]  
Claypool G.E., 1974, NATURAL GASES MARINE, P99, DOI [10.1007/978-1-4684-2757-8_8, DOI 10.1007/978-1-4684-2757-8_8]