Activity-based protein profiling in vivo using a copper(I)-catalyzed azide-alkyne [3+2] cycloaddition

被引:824
作者
Speers, AE
Adam, GC
Cravatt, BF
机构
[1] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA
[2] Scripps Res Inst, Dept Chem, La Jolla, CA 92037 USA
[3] Scripps Res Inst, Dept Cell Biol, La Jolla, CA 92037 USA
关键词
D O I
10.1021/ja034490h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Toward the goal of assigning function to the tens of thousands of protein products encoded by eukaryotic and prokaryotic genomes, the field of proteomics requires new technologies that can functionally characterize proteins within the dynamic environment of the cell, where these biomolecules are subject to myriad posttranslational modifications and the actions of endogenous activators and inhibitors. Here, we report an advanced strategy for activity-based protein profiling (ABPP) that addresses this important need. We show that several enzymes can be labeled in an activity-based manner both in vitro and in vivo by an azido-sulfonate ester probe and that these labeling events can be detected in whole proteomes by copper-catalyzed ligation with a rhodamine-alkyne reagent. This click chemistry-based strategy for ABPP represents a unique and versatile method for functional proteome analysis. Copyright © 2003 American Chemical Society.
引用
收藏
页码:4686 / 4687
页数:2
相关论文
共 28 条
[1]   Trifunctional chemical probes for the consolidated detection and identification of enzyme activities from complex proteomes [J].
Adam, GC ;
Sorensen, EJ ;
Cravatt, BF .
MOLECULAR & CELLULAR PROTEOMICS, 2002, 1 (10) :828-835
[2]   Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype [J].
Adam, GC ;
Sorensen, EJ ;
Cravatt, BF .
NATURE BIOTECHNOLOGY, 2002, 20 (08) :805-809
[3]   Profiling the specific reactivity of the proteome with non-directed activity-based probes [J].
Adam, GC ;
Cravatt, BF ;
Sorensen, EJ .
CHEMISTRY & BIOLOGY, 2001, 8 (01) :81-95
[4]   Chemical strategies for functional proteomics [J].
Adam, GC ;
Sorensen, EJ ;
Cravatt, BF .
MOLECULAR & CELLULAR PROTEOMICS, 2002, 1 (10) :781-790
[5]   Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme [J].
Borodovsky, A ;
Ovaa, H ;
Kolli, N ;
Gan-Erdene, T ;
Wilkinson, KD ;
Ploegh, HL ;
Kessler, BM .
CHEMISTRY & BIOLOGY, 2002, 9 (10) :1149-1159
[6]   Chemical strategies for the global analysis of protein function [J].
Cravatt, BF ;
Sorensen, EJ .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2000, 4 (06) :663-668
[7]   Multiple species of CPP32 and Mch2 are the major active caspases present in apoptotic cells [J].
Faleiro, L ;
Kobayashi, R ;
Fearnhead, H ;
Lazebnik, Y .
EMBO JOURNAL, 1997, 16 (09) :2271-2281
[8]   SITE-DIRECTED CONJUGATION OF NONPEPTIDE GROUPS TO PEPTIDES AND PROTEINS VIA PERIODATE-OXIDATION OF A 2-AMINO ALCOHOL - APPLICATION TO MODIFICATION AT N-TERMINAL SERINE [J].
GEOGHEGAN, KF ;
STROH, JG .
BIOCONJUGATE CHEMISTRY, 1992, 3 (02) :138-146
[9]   Chemical approaches for functionally probing the proteome [J].
Greenbaum, D ;
Baruch, A ;
Hayrapetian, L ;
Darula, Z ;
Burlingame, A ;
Medzihradszky, KF ;
Bogyo, M .
MOLECULAR & CELLULAR PROTEOMICS, 2002, 1 (01) :60-68
[10]   Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools [J].
Greenbaum, D ;
Medzihradszky, KF ;
Burlingame, A ;
Bogyo, M .
CHEMISTRY & BIOLOGY, 2000, 7 (08) :569-581