Second-order Runge-Kutta approximations in control constrained optimal control

被引:129
作者
Dontchev, AL [1 ]
Hager, WW
Veliov, VM
机构
[1] Math Reviews, Ann Arbor, MI 48107 USA
[2] Univ Florida, Dept Math, Gainesville, FL 32611 USA
[3] Bulgarian Acad Sci, Inst Math & Informat, BG-1040 Sofia, Bulgaria
[4] Vienna Univ Technol, A-1040 Vienna, Austria
关键词
optimal control; numerical solution; discretization; Runge Kutta scheme; rate of convergence;
D O I
10.1137/S0036142999351765
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze second-order Runge-Kutta approximations to a nonlinear optimal control problem with control constraints. If the optimal control has a derivative of bounded variation and a coercivity condition holds, we show that for a special class of Runge Kutta schemes, the error in the discrete approximating control is O(h(2)) where h is the mesh spacing.
引用
收藏
页码:202 / 226
页数:25
相关论文
共 54 条
  • [1] [Anonymous], IMA VOLUME MATH APPL
  • [2] [Anonymous], APPROXIMATE MINIMIZA
  • [3] [Anonymous], 1996, SPRINGER SER COMPUT
  • [4] Apostol T M, 1957, MATH ANAL
  • [5] BERTSEKAS DP, 1995, NONLINEAR PROGRAMMIN
  • [6] BOSARGE WE, 1973, SIAM J NUMER ANAL, V10, P94, DOI 10.1137/0710011
  • [7] BOSARGE WE, 1971, SIAM J CONTROL, V9, P15, DOI 10.1137/0309003
  • [8] BRUNOVSKY P, 1980, J DIFFER EQUATIONS, V38, P344, DOI 10.1016/0022-0396(80)90012-1
  • [9] DIFFERENCE APPROXIMATIONS IN OPTIMAL CONTROL PROBLEMS
    BUDAK, BM
    BERKOVICH, EM
    SOLOVEVA, EN
    [J]. SIAM JOURNAL ON CONTROL, 1969, 7 (01): : 18 - +
  • [10] Butcher J. C., 1987, The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods