A simplification of the double-sweep algorithm to solve the k-shortest path problem

被引:14
作者
Rink, KA [1 ]
Rodin, EY [1 ]
Sundarapandian, V [1 ]
机构
[1] Washington Univ, Ctr Optimizat & Semant Control, Dept Syst Sci & Math, St Louis, MO 63130 USA
关键词
D O I
10.1016/S0893-9659(00)00099-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we define the k-shortest path problem, which will be used to model the problem of routing aircraft through a network of airfields. This problem finds the optimal alternative routes from one or more origins to one or more destinations. We solve this problem using the double-sweep algorithm. We present a simplification to the double-sweep algorithm, and show that this simplification reduces the computational complexity of the algorithm by a factor of k. We prove that the simplified double-sweep algorithm converges. Finally, we demonstrate this algorithm on a small airlift network. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:77 / 85
页数:9
相关论文
共 13 条
[1]  
Amin S. M., 1995, Proceedings of the Intelligent Vehicles '95. Symposium (Cat. No.95TH8132), P430, DOI 10.1109/IVS.1995.528320
[2]  
Bertsekas DP., 1991, Linear network optimization: algorithms and codes
[3]   SHORTEST-PATH ALGORITHMS - TAXONOMY AND ANNOTATION [J].
DEO, N ;
PANG, CY .
NETWORKS, 1984, 14 (02) :275-323
[4]   AN APPRAISAL OF SOME SHORTEST-PATH ALGORITHMS [J].
DREYFUS, SE .
OPERATIONS RESEARCH, 1969, 17 (03) :395-&
[5]  
Evans J. R., 1992, OPTIMISATION ALGORIT
[6]  
GALLO G, 1986, MATH PROGRAM STUD, V26, P38, DOI 10.1007/BFb0121087
[7]   A NEW POLYNOMIALLY BOUNDED SHORTEST-PATH ALGORITHM [J].
GLOVER, F ;
KLINGMAN, D ;
PHILLIPS, N .
OPERATIONS RESEARCH, 1985, 33 (01) :65-73
[8]   DETERMINISTIC NETWORK OPTIMIZATION - BIBLIOGRAPHY [J].
GOLDEN, BL ;
MAGNANTI, TL .
NETWORKS, 1977, 7 (02) :149-183
[9]   SHORTEST-PATH METHODS - COMPLEXITY, INTERRELATIONS AND NEW PROPOSITIONS [J].
PALLOTTINO, S .
NETWORKS, 1984, 14 (02) :257-267
[10]  
RINK K, 1998, P 7 AIAA USAF NASA I