Gene therapy used for tissue engineering applications

被引:36
作者
Heyde, Mieke
Partridge, Kris A.
Oreffo, Richard O. C.
Howdle, Steven M.
Shakesheff, Kevin M.
Garnett, Martin C.
机构
[1] Univ Nottingham, Sch Pharm, Div Adv Drug Delivery & Tissue Engn, Nottingham NG7 2RD, England
[2] Univ Southampton, Bone & Joint Res Grp, Gen Hosp, Southampton SO16 6YD, Hants, England
[3] Univ Nottingham, Sch Chem, Clean Technol Grp, Nottingham NG7 2RD, England
基金
英国生物技术与生命科学研究理事会;
关键词
D O I
10.1211/jpp.59.3.0002
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
This review highlights the advances at the interface between tissue engineering and gene therapy. There are a large number of reports on gene therapy in tissue engineering, and these cover a huge range of different engineered tissues, different vectors, scaffolds and methodology. The review considers separately in-vitro and in-vivo gene transfer methods. The in-vivo gene transfer method is described first, using either viral or non-viral vectors to repair various tissues with and without the use of scaffolds. The use of a scaffold can overcome some of the challenges associated with delivery by direct injection. The ex-vivo method is described in the second half of the review. Attempts have been made to use this therapy for bone, cartilage, wound, urothelial, nerve tissue regeneration and for treating diabetes using viral or non-viral vectors. Again porous polymers can be used as scaffolds for cell transplantation. There are as yet few comparisons between these many different variables to show which is the best for any particular application. With few exceptions, all of the results were positive in showing some gene expression and some consequent effect on tissue growth and remodelling. Some of the principal advantages and disadvantages of various methods are discussed.
引用
收藏
页码:329 / 350
页数:22
相关论文
共 140 条
[1]  
Adachi N, 2002, J RHEUMATOL, V29, P1920
[2]   Novel cationic pentablock copolymers as non-viral vectors for gene therapy [J].
Agarwal, A ;
Unfer, R ;
Mallapragada, SK .
JOURNAL OF CONTROLLED RELEASE, 2005, 103 (01) :245-258
[3]  
Aggarwal N, 1999, CAN J VET RES, V63, P148
[4]   Gutless adenovirus: last-generation adenovirus for gene therapy [J].
Alba, R ;
Bosch, A ;
Chillon, M .
GENE THERAPY, 2005, 12 (Suppl 1) :S18-S27
[5]  
Amado LC, 2005, P NATL ACAD SCI USA, V102, P11474, DOI 10.1073/pnas.0504388102
[6]   PLGA microspheres containing plasmid DNA: Preservation of supercoiled DNA via cryopreparation and carbohydrate stabilization [J].
Ando, S ;
Putnam, D ;
Pack, DW ;
Langer, R .
JOURNAL OF PHARMACEUTICAL SCIENCES, 1999, 88 (01) :126-130
[7]   IN-VIVO TRANSFER AND EXPRESSION OF A HUMAN EPIDERMAL GROWTH-FACTOR GENE ACCELERATES WOUND REPAIR [J].
ANDREE, C ;
SWAIN, WF ;
PAGE, CP ;
MACKLIN, MD ;
SLAMA, J ;
HATZIS, D ;
ERIKSSON, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (25) :12188-12192
[8]   Nucleofection-based ex vivo nonviral gene delivery to human stem cells as a platform for tissue regeneration [J].
Aslan, Hadi ;
Zilberman, Yoram ;
Arbeli, Vered ;
Sheyn, Dima ;
Matan, Yoav ;
Liebergall, Meir ;
Li, Jin Zhong ;
Helm, Gregory A. ;
Gazit, Dan ;
Gazit, Zulma .
TISSUE ENGINEERING, 2006, 12 (04) :877-889
[9]   Genetic enhancement of fracture repair: healing of an experimental segmental defect by adenoviral transfer of the BMP-2 gene [J].
Baltzer, AWA ;
Lattermann, C ;
Whalen, JD ;
Wooley, P ;
Weiss, K ;
Grimm, M ;
Ghivizzani, SC ;
Robbins, PD ;
Evans, CH .
GENE THERAPY, 2000, 7 (09) :734-739
[10]   Gene delivery through cell culture substrate adsorbed DNA complexes [J].
Bengali, Z ;
Pannier, AK ;
Segura, T ;
Anderson, BC ;
Jang, JH ;
Mustoe, TA ;
Shea, LD .
BIOTECHNOLOGY AND BIOENGINEERING, 2005, 90 (03) :290-302