Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles

被引:309
作者
Xu, Yinhui [1 ]
Zhao, Dongye [1 ]
机构
[1] Auburn Univ, Dept Civil Engn, Environm Engn Program, Auburn, AL 36849 USA
关键词
heavy metals; immobilization; nanoparticles; reduction; zero-valent iron;
D O I
10.1016/j.watres.2007.02.037
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Laboratory batch and column experiments were conducted to investigate the feasibility of using a new class of stabilized zero-valent iron (ZVI) nanoparticles for in situ reductive immobilization of Cr(VI) in water and in a sandy loam soil. Batch kinetic tests indicated that 0.08 g/L of the ZVI nanoparticles were able to rapidly reduce 34 mg/L of Cr(VI) in water at an initial pseudo first-order rate constant of 0.08 h(-1). The extent of Cr(VI) reduction was increased from 24% to 90% as the ZVI dosage was increased from 0.04 to 0.12g/L. The leachability of Cr preloaded in a Cr-loaded sandy soil was reduced by nearly 50% when the soil was amended with 0.08 g/L of the ZVI nanoparticles in batch tests at a soil-to-solution ratio of 1g: 10 mL. Column experiments indicated that the stabilized ZVI nanoparticles are highly deliverable in the soil column. When the soil column was treated with 5.7 bed volumes of 0.06 g/L of the nanoparticles at pH 5.60, only 4.9% of the total Cr was eluted compared to 12% for untreated soil under otherwise identical conditions. The ZVI treatment reduced the TCLP leachability of Cr in the soil by 90%, and the California WET (Waste Extraction Test) leachability by 76%. The stabilized ZVI nanoparticles may serve as a highly soil- dispersible and effective agent for in situ reductive immobilization of chromium in soils, groundwater, or industrial wastes. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2101 / 2108
页数:8
相关论文
共 36 条
[1]   Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal [J].
Alowitz, MJ ;
Scherer, MM .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2002, 36 (03) :299-306
[2]   Immobilization of chromate from coal fly ash leachate using an attenuating barrier containing zero-valent iron [J].
Astrup, T ;
Stipp, SLS ;
Christensen, TH .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2000, 34 (19) :4163-4168
[3]   In-situ remediation of Cr(VI)-contaminated groundwater using permeable reactive walls: Laboratory studies [J].
Blowes, DW ;
Ptacek, CJ ;
Jambor, JL .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1997, 31 (12) :3348-3357
[4]   Influence of mineral surfaces on Chromium(VI) reduction by Iron(II) [J].
Buerge, IJ ;
Hug, SJ .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1999, 33 (23) :4285-4291
[5]   Influence of organic ligands on chromium(VI) reduction by iron(II) [J].
Buerge, IJ ;
Hug, SJ .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1998, 32 (14) :2092-2099
[6]   ZERO-VALENT IRON FOR THE IN-SITU REMEDIATION OF SELECTED METALS IN GROUNDWATER [J].
CANTRELL, KJ ;
KAPLAN, DI ;
WIETSMA, TW .
JOURNAL OF HAZARDOUS MATERIALS, 1995, 42 (02) :201-212
[7]   Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles [J].
Cao, Hasheng ;
Zhang, Wei-Xian .
JOURNAL OF HAZARDOUS MATERIALS, 2006, 132 (2-3) :213-219
[8]   A new method to produce nanoscale iron for nitrate removal [J].
Chen, SS ;
Hsu, HD ;
Li, CW .
JOURNAL OF NANOPARTICLE RESEARCH, 2004, 6 (06) :639-647
[9]  
*EPA, 2006, CONS FACT SHEET CHRO
[10]   Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron [J].
Furukawa, Y ;
Kim, JW ;
Watkins, J ;
Wilkin, RT .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2002, 36 (24) :5469-5475