Resolution of a paradox involving viscous dissipation and nonlinear drag in a porous medium

被引:134
作者
Nield, DA [1 ]
机构
[1] Univ Auckland, Dept Engn Sci, Auckland, New Zealand
关键词
viscous dissipation; Forchheimer model; Brinkman model; inertial effects; nonlinear drag; forced convection; natural convection;
D O I
10.1023/A:1006636605498
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The modelling of viscous dissipation in a porous medium saturated by an incompressible fluid is discussed, for the case of Darcy, Forchheimer and Brinkman models. An apparent paradox relating to the effect of inertial effects on viscous dissipation is resolved, and some wider aspects of resistance to flow (concerning quadratic drag and cubic drag) in a porous medium are discussed. Criteria are given for the importance or otherwise of viscous dissipation in various situations.
引用
收藏
页码:349 / 357
页数:9
相关论文
共 22 条
[1]  
[Anonymous], 1937, J APPL MECH, DOI DOI 10.1115/1.4008783
[2]  
Bejan A., 1995, CONVECTION HEAT TRAN, P523
[3]  
DYBBS A, 1984, NEW LOOK POROUS MEDI, P199
[4]  
FAND RM, 1994, HEAT TRANSFER 1994, V5, P237
[5]   Nonlinear corrections to Darcy's law at low Reynolds numbers [J].
Firdaouss, M ;
Guermond, JL ;
LeQuere, P .
JOURNAL OF FLUID MECHANICS, 1997, 343 :331-350
[6]   NON-LINEAR EQUATION GOVERNING FLOW IN A SATURATED POROUS-MEDIUM [J].
JOSEPH, DD ;
NIELD, DA ;
PAPANICOLAOU, G .
WATER RESOURCES RESEARCH, 1982, 18 (04) :1049-1052
[7]  
KACAC S, 1987, HDB SINGLE PHASE CON, pCH1
[8]  
Kaviany M., 1995, MECH ENG SERIES
[9]  
Lage JL, 1998, TRANSPORT PHENOMENA IN POROUS MEDIA, P1, DOI 10.1016/B978-008042843-7/50001-5
[10]  
Lage JL, 1997, ASME, V119, P701