Mechanism and its regulation of tumor-induced angiogenesis

被引:229
作者
Gupta, MK [1 ]
Qin, RY [1 ]
机构
[1] Huazhong Univ Sci & Technol, Tongji Med Coll, Tongji Hosp, Dept Surg, Wuhan 430030, Hubei, Peoples R China
关键词
D O I
10.3748/wjg.v9.i6.1144
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Tumor angiogenesis is the proliferation of a network of blood vessels that penetrates into cancerous growths, supplying nutrients and oxygen and removing waste products. The process of angiogenesis plays an important role in many physiological and pathological conditions. Solid tumors depend on angiogenesis for growth and metastasis in a hostile environment. In the prevascular phase, the tumor is rarely larger than 2 to 3 mm(3) and may contain a million or more cells. Up to this size, tumor cells can obtain the necessary oxygen and nutrient supplies required for growth and survival by simple passive diffusion. The properties of tumors to release and induce several angiogenic and anti-angiogenic factors which play crucial roles in regulating endothelial cell (EC) proliferation, migration, apoptosis or survival, cell-cell and cell-matrix adhesion through different intracellular signaling are thought to be the essential mechanisms during tumor-induced angiogenesis. Tumor angiogenesis actually starts with tumor cells releasing molecules that send signals to surrounding normal host tissue. This signaling activates certain genes in the host tissue that, in turn, make proteins to encourage growth of new blood vessels. In this review, we focus the mechanisms of tumor-induced angiogenesis, with an emphasis on the regulatory role of several angiogenic and anti-angiogenic agents during the angiogenic process in tumors. Advances in understanding the mechanisms of tumor angiogenesis have led to the development of several most effective anti-angiogenic and anti-metastatic therapeutic agents and also have provided several techniques for the regulation of cancer's angiogenic switch. The suggestion is made that standard cytotoxic chemotherapy and angiogenesis inhibitors used in combination may produce complementary therapeutic benefits in the treatment of cancer.
引用
收藏
页码:1144 / 1155
页数:12
相关论文
共 146 条
[1]   Somatostatin controls Kaposi's sarcoma tumor growth through inhibition of angiogenesis [J].
Albini, A ;
Florio, T ;
Giunciuglio, D ;
Masiello, L ;
Carlone, S ;
Corsaro, A ;
Thellung, S ;
Cai, T ;
Noonan, DM ;
Schettini, G .
FASEB JOURNAL, 1999, 13 (06) :647-655
[2]   MIGRATION AND PROLIFERATION OF ENDOTHELIAL CELLS IN PREFORMED AND NEWLY FORMED BLOOD-VESSELS DURING TUMOR ANGIOGENESIS [J].
AUSPRUNK, DH ;
FOLKMAN, J .
MICROVASCULAR RESEARCH, 1977, 14 (01) :53-65
[3]   Divergent effects of tissue inhibitor of metalloproteinase-1, -2, or -3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro - TIMP-3 promotes apoptosis [J].
Baker, AH ;
Zaltsman, AB ;
George, SJ ;
Newby, AC .
JOURNAL OF CLINICAL INVESTIGATION, 1998, 101 (06) :1478-1487
[4]   Role of interleukin-8 in tumor growth and metastasis of human melanoma [J].
Bar-Eli, M .
PATHOBIOLOGY, 1999, 67 (01) :12-18
[5]   Production of matrix metalloproteinase-9 in early stage B-CLL: suppression by interferons [J].
Bauvois, B ;
Dumont, J ;
Mathiot, C ;
Kolb, JP .
LEUKEMIA, 2002, 16 (05) :791-798
[6]   Signaling angiogenesis via p42/p44 MAP kinase and hypoxia [J].
Berra, E ;
Milanini, J ;
Richard, DE ;
Le Gall, M ;
Viñals, F ;
Gothié, E ;
Roux, D ;
Pagès, G ;
Pouysségur, J .
BIOCHEMICAL PHARMACOLOGY, 2000, 60 (08) :1171-1178
[7]   Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance [J].
Boehm, T ;
Folkman, J ;
Browder, T ;
OReilly, MS .
NATURE, 1997, 390 (6658) :404-407
[8]   Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity [J].
Brooks, PC ;
Silletti, S ;
von Schalscha, TL ;
Friedlander, M ;
Cheresh, DA .
CELL, 1998, 92 (03) :391-400
[9]   Hypoxia-inducible factor 1 regulates vascular endothelial growth factor expression in human pancreatic cancer [J].
Büchler, P ;
Reber, HA ;
Büchler, M ;
Shrinkante, S ;
Büchler, MW ;
Friess, H ;
Semenza, GL ;
Hines, OJ .
PANCREAS, 2003, 26 (01) :56-64
[10]   INHIBITION OF CELL-PROLIFERATION BY THE SOMATOSTATIN ANALOG RC-160 IS MEDIATED BY SOMATOSTATIN RECEPTOR SUBTYPES SSTR2 AND SSTR5 THROUGH DIFFERENT MECHANISMS [J].
BUSCAIL, L ;
ESTEVE, JP ;
SAINTLAURENT, N ;
BERTRAND, V ;
REISINE, T ;
OCARROLL, AM ;
BELL, GI ;
SCHALLY, AV ;
VAYSSE, N ;
SUSINI, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (05) :1580-1584