Quantum chemical calculation of excited states of flavin-related molecules

被引:136
作者
Neiss, C
Saalfrank, P
Parac, M
Grimme, S
机构
[1] Univ Regensburg, Inst Phys & Theoret Chem, D-93053 Regensburg, Germany
[2] Univ Munster, Organ Chem Inst, D-48149 Munster, Germany
关键词
D O I
10.1021/jp021671h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The performance of various methods of various quantum mechanical methods for the calculation of lowlying singlet and triplet excited states of biologically relevant species related to flavins is critically examined. In particular, configuration interaction singles (CIS), time-dependent density functional theory (TD-DFT), and the recently proposed multireference configuration interaction DFT method (DFT/MRCI) [Grimme, S.; Waletzke, M. J. Chem. Phys. 1999, 111, 5645] are compared. For the DFT-based methods, various hybrid exchange-correlation functionals are used. For the "test molecule" uracil, it is found that CIS does not give quantitatively accurate energies even in conjunction with large basis sets including diffuse functions. In contrast TD-DFT(B3LYP) and DFT/MRCI produce reasonably accurate results even with medium-sized basis sets such as 6-31G*. Following these test calculations, the absorption energies of the lumiflavin molecule in its ground (i.e., So --> S-n) and lowest triplet state (i.e., T-1 --> T-n) are investigated. The nature of the low-lying excited states is discussed, and the results are compared to experiment. Finally, the effect of surrounding water molecules and of geometrical distortions on the absorption spectrum of flavin-type species is discussed on the basis of model calculations.
引用
收藏
页码:140 / 147
页数:8
相关论文
共 45 条
[1]   INFRARED-SPECTRA AND MOLECULAR ASSOCIATION OF LUMIFLAVIN AND RIBOFLAVIN DERIVATIVES [J].
ABE, M ;
KYOGOKU, Y ;
KITAGAWA, T ;
KAWANO, K ;
OHISHI, N ;
TAKAISUZUKI, A ;
YAGI, K .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 1986, 42 (09) :1059-1068
[2]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[3]   THE ELECTRONIC-SPECTRA OF THE PYRIMIDINE-BASES URACIL AND THYMINE IN A SUPERSONIC MOLECULAR-BEAM [J].
BRADY, BB ;
PETEANU, LA ;
LEVY, DH .
CHEMICAL PHYSICS LETTERS, 1988, 147 (06) :538-543
[4]   VAPOR SPECTRA AND HEATS OF VAPORIZATION OF SOME PURINE AND PYRIMIDINE BASES [J].
CLARK, LB ;
PESCHEL, GG ;
TINOCO, I .
JOURNAL OF PHYSICAL CHEMISTRY, 1965, 69 (10) :3615-&
[5]   Structure of a flavin-binding plant photoreceptor domain: Insights into light-mediated signal transduction [J].
Crosson, S ;
Moffat, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (06) :2995-3000
[6]   SPEKTREN + STRUKTUREN DER AM FLAVIN-REDOXSYSTEM BETEILIGTEN PARTIKELN [J].
DUDLEY, KH ;
HEMMERICH, P ;
MULLER, F ;
EHRENBERG, A .
HELVETICA CHIMICA ACTA, 1964, 47 (05) :1354-&
[7]   CHIH-DFT determination of the molecular structure infrared spectra, UV spectra and chemical reactivity of three antitubercular compounds: Rifampicin, Isoniazid and Pyrazinamide [J].
Favila, Alejandra ;
Gallo, Marco ;
Glossman-Mitnik, Daniel .
JOURNAL OF MOLECULAR MODELING, 2007, 13 (04) :505-518
[8]   TOWARD A SYSTEMATIC MOLECULAR-ORBITAL THEORY FOR EXCITED-STATES [J].
FORESMAN, JB ;
HEADGORDON, M ;
POPLE, JA ;
FRISCH, MJ .
JOURNAL OF PHYSICAL CHEMISTRY, 1992, 96 (01) :135-149
[9]  
Frisch M.J., 2016, Gaussian 16 Revision C. 01. 2016, V16, P01
[10]  
*GAUSS INC, 2002, GAUSS 98 REL NOT REV