Microcanonical foundation for systems with power-law distributions

被引:44
作者
Abe, S [1 ]
Rajagopal, AK
机构
[1] Nihon Univ, Coll Sci & Technol, Chiba 2748501, Japan
[2] USN, Res Lab, Washington, DC 20375 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2000年 / 33卷 / 48期
关键词
D O I
10.1088/0305-4470/33/48/311
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Starting from a microcanonical basis with the principle of equal a priori probability, it is shown using the method of steepest descents that besides ordinary Boltzmann-Gibbs theory with the exponential distribution a theory describing systems with power-law distributions can also be derived.
引用
收藏
页码:8733 / 8738
页数:6
相关论文
共 17 条
  • [1] Rates of convergence of non-extensive statistical distributions to Levy distributions in full and half-spaces
    Abe, S
    Rajagopal, AK
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (48): : 8723 - 8732
  • [2] Nonuniqueness of canonical ensemble theory arising from microcanonical basis
    Abe, S
    Rajagopal, AK
    [J]. PHYSICS LETTERS A, 2000, 272 (5-6) : 341 - 345
  • [3] ABE S, 2000, CONDMAT0009400
  • [4] ABE S, 2000, IN PRESS EUROPHYS LE
  • [5] [Anonymous], 1974, NONEQUILIBRIUM STAT
  • [6] EQUIPROBABILITY, INFERENCE, AND ENTROPY IN QUANTUM-THEORY
    BALIAN, R
    BALAZS, NL
    [J]. ANNALS OF PHYSICS, 1987, 179 (01) : 97 - 144
  • [7] Levy distribution of single molecule line shape cumulants in glasses
    Barkai, E
    Silbey, R
    Zumofen, G
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (23) : 5339 - 5342
  • [8] Application of generalized thermostatistics to fully developed turbulence
    Beck, C
    [J]. PHYSICA A, 2000, 277 (1-2): : 115 - 123
  • [9] Beck C., 1993, THERMODYNAMICS CHAOT
  • [10] A nonextensive thermodynamical equilibrium approach in e+e- → hadrons
    Bediaga, I
    Curado, EMF
    de Miranda, JM
    [J]. PHYSICA A, 2000, 286 (1-2): : 156 - 163