A new unconstrained optimization method for imprecise function and gradient values

被引:24
作者
Vrahatis, MN
Androulakis, GS
Manoussakis, GE
机构
[1] Department of Mathematics, University of Patras
关键词
D O I
10.1006/jmaa.1996.0041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new algorithm for unconstrained optimization is presented which is based on a modified one-dimensional bisection method. The algorithm actually uses only the signs of function and gradient values. Thus it can be applied to problems with imprecise function and gradient values. It converges in one iteration on quadratic functions of n variables, it rapidly minimizes general functions and it does not require evaluation or estimation of the matrix of second partial derivatives. The algorithm has been implemented and tested. Performance information for well-known test functions is reported. (C) 1996 Academic Press, Inc.
引用
收藏
页码:586 / 607
页数:22
相关论文
共 26 条
[1]  
[Anonymous], [No title captured]
[3]  
Avriel M., 2003, NONLINEAR PROGRAMMIN
[4]  
BOSTSARIS CA, 1978, J MATH ANAL APPL, V63, P396
[5]  
Cauchy A.-L., 1847, CR HEBD ACAD SCI, P536, DOI DOI 10.1017/CBO9780511702396.063
[6]  
DAVIDON WC, 1959, REC ANL5990 RES DEV
[7]  
DENNIS JE, 1983, NUMERICAL METHODS UN
[8]   FUNCTION MINIMIZATION BY CONJUGATE GRADIENTS [J].
FLETCHER, R ;
REEVES, CM .
COMPUTER JOURNAL, 1964, 7 (02) :149-&
[9]   A RAPIDLY CONVERGENT DESCENT METHOD FOR MINIMIZATION [J].
FLETCHER, R ;
POWELL, MJD .
COMPUTER JOURNAL, 1963, 6 (02) :163-&
[10]   ON THE CALCULATION OF THE EXACT NUMBER OF ZEROS OF A SET OF EQUATIONS [J].
HOENDERS, BJ ;
SLUMP, CH .
COMPUTING, 1983, 30 (02) :137-147