Relationship between cholesterol trafficking and signaling in rafts and caveolae

被引:108
作者
Fielding, CJ
Fielding, PE
机构
[1] Univ Calif San Francisco, Med Ctr, Cardiovasc Res Inst, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Dept Physiol, San Francisco, CA 94143 USA
[3] Univ Calif San Francisco, Dept Med, San Francisco, CA 94143 USA
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES | 2003年 / 1610卷 / 02期
关键词
lipid raft; caveolae; caveolin; cholesterol; signal transduction;
D O I
10.1016/S0005-2736(03)00020-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Caveolae and lipid rafts are two distinct populations of free cholesterol, sphingolipid (FC/SPH)-rich cell surface microdomains. They differ in stability, shape, and the presence or absence of caveolin (present in caveolae) or GPI-anchored proteins (enriched in lipid rafts). In primary cells, caveolae and rafts support the assembly of different signaling complexes, though signal transduction from both is strongly dependent on the presence of FC. It was initially thought that FC promoted the formation of inactive reservoirs of signaling proteins. Recent data supports the concept of a more dynamic role for FC in caveolae and probably, also lipid rafts. It is more likely that the FC content of these domains is actively modulated as protein complexes are formed and, following signal transduction, disassembled. In transformed cell lines with few caveolae, little caveolin and a preponderance of rafts, complexes normally assembled on caveolae may function in rafts, albeit with altered kinetics. However, caveolae and lipid rafts appear not to be interconvertible. The presence of non-caveolar pools of caveolin in recycling endosomes (RE), the trans-Golgi network (TGN) and in mobile chaperone complexes is now recognized. A role in the uptake of microorganisms by cells ascribed to caveolae now seems more likely to be mediated by cell surface rafts. (C) 2003 Elsevier Science B.V All rights reserved.
引用
收藏
页码:219 / 228
页数:10
相关论文
共 96 条
[1]   Cross-talk between caveolae and glycosylphosphatidylinositol-rich domains [J].
Abrami, L ;
Fivaz, M ;
Kobayashi, T ;
Kinoshita, T ;
Parton, RG ;
van der Goot, FG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (33) :30729-30736
[2]  
[Anonymous], 1998, Biochim. Biophys. Acta
[3]   Lipid raft microdomains: A gateway for compartmentalized trafficking of Ebola and Marburg viruses [J].
Bavari, S ;
Bosio, CM ;
Wiegand, E ;
Ruthel, G ;
Will, AB ;
Geisbert, TW ;
Hevey, M ;
Schmaljohn, C ;
Schmaljohn, A ;
Aman, MJ .
JOURNAL OF EXPERIMENTAL MEDICINE, 2002, 195 (05) :593-602
[4]   Two sterol regulatory element-like sequences mediate up-regulation of caveolin gene transcription in response to low density lipoprotein free cholesterol [J].
Bist, A ;
Fielding, PE ;
Fielding, CJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (20) :10693-10698
[5]   Oxidized low density lipoprotein displaces endothelial nitric-oxide synthase (eNOS) from plasmalemmal caveolae and impairs eNOS activation [J].
Blair, A ;
Shaul, PW ;
Yuhanna, IS ;
Conrad, PA ;
Smart, EJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (45) :32512-32519
[6]   Tyrosine-phosphorylated caveolin is a physiological substrate of the low Mr protein-tyrosine phosphatase [J].
Caselli, A ;
Taddei, ML ;
Manao, G ;
Camici, G ;
Ramponi, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (22) :18849-18854
[7]   CAVEOLIN CYCLES BETWEEN PLASMA-MEMBRANE CAVEOLAE AND THE GOLGI-COMPLEX BY MICROTUBULE-DEPENDENT AND MICROTUBULE-INDEPENDENT STEPS [J].
CONRAD, PA ;
SMART, EJ ;
YING, YS ;
ANDERSON, RGW ;
BLOOM, GS .
JOURNAL OF CELL BIOLOGY, 1995, 131 (06) :1421-1433
[8]   Partitioning of Thy-1, GM1, and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers [J].
Dietrich, C ;
Volovyk, ZN ;
Levi, M ;
Thompson, NL ;
Jacobson, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (19) :10642-10647
[9]   Lipid rafts reconstituted in model membranes [J].
Dietrich, C ;
Bagatolli, LA ;
Volovyk, ZN ;
Thompson, NL ;
Levi, M ;
Jacobson, K ;
Gratton, E .
BIOPHYSICAL JOURNAL, 2001, 80 (03) :1417-1428
[10]   The human immunodeficiency virus type 1 NEF protein binds the Src-related tyrosine kinase Lck SH2 domain through a novel phosphotyrosine independent mechanism [J].
Dutartre, H ;
Harris, M ;
Olive, D ;
Collette, Y .
VIROLOGY, 1998, 247 (02) :200-211