Positive control of tylosin biosynthesis: pivotal role of TylR

被引:48
作者
Stratigopoulos, G [1 ]
Bate, N [1 ]
Cundliffe, E [1 ]
机构
[1] Univ Leicester, Dept Biochem, Leicester LE1 7RH, Leics, England
关键词
D O I
10.1111/j.1365-2958.2004.04347.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Control of tylosin production in Streptomyces fradiae features interplay between a repressor, TylQ, and an activator, TylS, during regulation of tylR. The latter encodes a pathway-specific activator that controls most of the tylosin-biosynthetic (tyl) genes that are subject to regulation. This was established by targeted gene disruption applied separately to tylR and tylS together with transcript analysis involving reverse transcription polymerase chain reaction (RT-PCR). TylR controls multiple genes that encode the synthesis or addition of all three tylosin sugars, plus polyketide ring oxidation, and at least one of the polyketide synthase (PKS) megagenes, tylGI. (Expression of a few tyl genes, plus the resistance determinants tlrB and tlrD, together with some ancillary or unassigned genes, is not apparently regulated during fermentation, consistent with constitutive expression.) In contrast, the only gene known for sure to be directly controlled by TylS is tylR, and there are very few additional candidates. These include the mycinose-biosynthetic gene, tylJ, and two previously unassigned genes, ORF12* (tylU) plus ORF11* (tylV). TylS also controls the PKS genes [tylGIII-tylGIV-tylGV] although not in obligatory fashion. These genes can be transcribed (i.e. tylosin can be produced) in a tylS-KO strain by forcing overexpression of tylR using a foreign promoter. We therefore suspect that TylS might control the PKS genes indirectly, although this remains to be established unequivocally. Conceivably, the direct effects of TylS are exerted exclusively on other regulators. Tylosin production levels were elevated when tylS or (especially) tylR was overexpressed in S. fradiae wild-type and yield increments of industrial significance were generated by similar manipulation of an enhanced production strain.
引用
收藏
页码:1326 / 1334
页数:9
相关论文
共 45 条
[1]  
[Anonymous], ACTINOMYCETOLOGICA
[2]   CLONING AND NUCLEOTIDE-SEQUENCES OF 2 GENES INVOLVED IN THE 4''-O-ACYLATION OF MACROLIDE ANTIBIOTICS FROM STREPTOMYCES-THERMOTOLERANS [J].
ARISAWA, A ;
KAWAMURA, N ;
TSUNEKAWA, H ;
OKAMURA, K ;
TONE, H ;
OKAMOTO, R .
BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 1993, 57 (12) :2020-2025
[3]  
BALTZ RH, 1988, ANNU REV MICROBIOL, V42, P547
[4]   Differential roles of two SARP-encoding regulatory genes during tylosin biosynthesis [J].
Bate, N ;
Stratigopoulos, G ;
Cundliffe, E .
MOLECULAR MICROBIOLOGY, 2002, 43 (02) :449-458
[5]   The mycinose-biosynthetic genes of Streptomyces fradiae producer of tylosin [J].
Bate, N ;
Cundliffe, E .
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 1999, 23 (02) :118-122
[6]   Multiple regulatory genes in the tylosin biosynthetic cluster of Streptomyces fradiae [J].
Bate, N ;
Butler, AR ;
Gandecha, AR ;
Cundliffe, E .
CHEMISTRY & BIOLOGY, 1999, 6 (09) :617-624
[7]   The mycarose-biosynthetic genes of Streptomyces fradiae, producer of tylosin [J].
Bate, N ;
Butler, AR ;
Smith, IP ;
Cundliffe, E .
MICROBIOLOGY-UK, 2000, 146 :139-146
[8]   The regulation of antibiotic production in Streptomyces coelicolor A3(2) [J].
Bibb, M .
MICROBIOLOGY-SGM, 1996, 142 :1335-1344
[9]   THE MESSENGER-RNA FOR THE 23S RIBOSOMAL-RNA METHYLASE ENCODED BY THE ERME GENE OF SACCHAROPOLYSPORA-ERYTHRAEA IS TRANSLATED IN THE ABSENCE OF A CONVENTIONAL RIBOSOME-BINDING SITE [J].
BIBB, MJ ;
WHITE, J ;
WARD, JM ;
JANSSEN, GR .
MOLECULAR MICROBIOLOGY, 1994, 14 (03) :533-545
[10]   PLASMID CLONING VECTORS FOR THE CONJUGAL TRANSFER OF DNA FROM ESCHERICHIA-COLI TO STREPTOMYCES SPP [J].
BIERMAN, M ;
LOGAN, R ;
OBRIEN, K ;
SENO, ET ;
RAO, RN ;
SCHONER, BE .
GENE, 1992, 116 (01) :43-49