Early painful diabetic neuropathy is associated with differential changes in the expression and function of vanilloid receptor 1

被引:184
作者
Hong, SS [1 ]
Wiley, JW [1 ]
机构
[1] Univ Michigan, Dept Internal Med, Ann Arbor, MI 48109 USA
关键词
D O I
10.1074/jbc.M408500200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Diabetes mellitus is associated with one or more kinds of stimulus-evoked pain including hyperalgesia and allodynia. The mechanisms underlying painful diabetic neuropathy remain poorly understood. Previous studies demonstrate an important role of vanilloid receptor 1 (VR1) in inflammation and injury-induced pain. Here we investigated the function and expression of VR1 in dorsal root ganglion (DRG) neurons isolated from streptozotocin-induced diabetic rats between 4 and 8 weeks after onset of diabetes. DRG neurons from diabetic rats showed significant increases in capsaicin- and proton-activated inward currents. These evoked currents were completely blocked by the capsaicin antagonist capsazepine. Capsaicin-induced desensitization of VR1 was down-regulated, whereas VR1 re-sensitization was up-regulated in DRG neurons from diabetic rats. The protein kinase C (PKC) activator phorbol 12-myristate 13-acetate blunted VR1 desensitization, and this effect was reversible in the presence of the PKC inhibitor bisindolylmaleimide I. Compared with the controls, VR1 protein was decreased in DRG whole-cell homogenates from diabetic rats, but increased levels of VR1 protein were observed on plasma membranes. Of interest, the tetrameric form of VR1 increased significantly in DRGs from diabetic rats. Increased phosphorylation levels of VR1 were also observed in DRG neurons from diabetic rats. Colocalization studies demonstrated that VR1 expression was increased in large myelinated A-fiber DRG neurons, whereas it was decreased in small unmyelinated C-fiber neurons as a result of diabetes. These results suggest that painful diabetic neuropathy is associated with altered cell-specific expression of the VR1 receptor that is coupled to increased function through PKC-mediated phosphorylation, oligomerization, and targeted expression on the cell surface membrane.
引用
收藏
页码:618 / 627
页数:10
相关论文
共 61 条
[1]   Local inflammation increases vanilloid receptor 1 expression within distinct subgroups of DRG neurons [J].
Amaya, F ;
Oh-Hashi, K ;
Naruse, Y ;
Iijima, N ;
Ueda, M ;
Shimosato, G ;
Tominaga, M ;
Tanaka, Y ;
Tanaka, M .
BRAIN RESEARCH, 2003, 963 (1-2) :190-196
[2]   Diversity of expression of the sensory neuron-specific TTX-resistant voltage-gated sodium ion channels SNS and SNS2 [J].
Amaya, F ;
Decosterd, I ;
Samad, TA ;
Plumpton, C ;
Tate, S ;
Mannion, RJ ;
Costigan, M ;
Woolf, CJ .
MOLECULAR AND CELLULAR NEUROSCIENCE, 2000, 15 (04) :331-342
[3]   Quercetin, a bioflavonoid, attenuates thermal hyperalgesia in a mouse model of diabetic neuropathic pain [J].
Anjaneyulu, M ;
Chopra, K .
PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, 2003, 27 (06) :1001-1005
[4]  
Baba H, 1999, J NEUROSCI, V19, P859
[5]   Neural apoptosis in the retina during experimental and human diabetes - Early onset and effect of insulin [J].
Barber, AJ ;
Lieth, E ;
Khin, SA ;
Antonetti, DA ;
Buchanan, AG ;
Gardner, TW .
JOURNAL OF CLINICAL INVESTIGATION, 1998, 102 (04) :783-791
[6]   Vanilloid and TRP channels: a family of lipid-gated cation channels [J].
Benham, CD ;
Davis, JB ;
Randall, AD .
NEUROPHARMACOLOGY, 2002, 42 (07) :873-888
[7]   CAPSAZEPINE - A COMPETITIVE ANTAGONIST OF THE SENSORY NEURON EXCITANT CAPSAICIN [J].
BEVAN, S ;
HOTHI, S ;
HUGHES, G ;
JAMES, IF ;
RANG, HP ;
SHAH, K ;
WALPOLE, CSJ ;
YEATS, JC .
BRITISH JOURNAL OF PHARMACOLOGY, 1992, 107 (02) :544-552
[8]   Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1) [J].
Bhave, G ;
Hu, HJ ;
Glauner, KS ;
Zhu, WG ;
Wang, HB ;
Brasier, DJ ;
Oxford, GS ;
Gereau, RW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (21) :12480-12485
[9]   cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation [J].
Bhave, G ;
Zhu, WG ;
Wang, HB ;
Brasier, DJ ;
Oxford, GS ;
Gereau, RW .
NEURON, 2002, 35 (04) :721-731
[10]   Signalling pathways involved in the sensitisation of mouse nociceptive neurones by nerve growth factor [J].
Bonnington, JK ;
McNaughton, PA .
JOURNAL OF PHYSIOLOGY-LONDON, 2003, 551 (02) :433-446