Cannabinergic ligands

被引:114
作者
Palmer, SL
Thakur, GA
Makriyannis, A
机构
[1] Univ Connecticut, Ctr Drug Discovery, Dept Pharmaceut Sci, Storrs, CT 06269 USA
[2] Univ Connecticut, Dept Mol & Cell Biol, Ctr Drug Discovery, Storrs, CT 06269 USA
[3] Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA
关键词
cannabinoid receptors; anandamide; cannabimimetics; cannabinergics; cannabinoid receptor agonists; cannabinoid receptor antagonists; fatty acid amide hydrolase; anandamide transporter;
D O I
10.1016/S0009-3084(02)00143-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The understanding of the pharmacology surrounding the cannabinergic system has seen many advances since the discovery of the CB 1 receptor in the mammalian brain and the CB2 receptor in the periphery. Among these advances is the discovery of the endogenous ligands arachidonoylethanolamide (anandamide) and 2-arachidonoylglycerol amide (2-AG), which are selective agonists for the CBI and CB2 receptors, respectively. These endogenous neuromodulators involved in the cannabinergic system are thought to be produced on demand and are metabolized by the enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAG lipase). Recently, we characterized a reuptake system that facilitates the transport of anandamide across the cell membrane and subsequently developed selective inhibitors of this transport, which have been found to have therapeutic potential as analgesic and peripheral vasodilators. The cannabinergic proteins currently being explored, which include the CB1 and CB2 receptors, FAAH and the anandamide transporter, are excellent targets for the development of therapeutically useful drugs for a range of conditions including pain, loss of appetite, immunosuppression, peripheral vascular disease and motor disorders. As cannabinoid research has progressed, various potent and selective cannabimimetic ligands, targeting these four cannabinoid proteins, have been designed and synthesized. Many of these ligands serve as important molecular probes, providing structural information regarding the binding sites of the cannabinergic proteins, as well as pharmacological tools, which have been playing pivotal roles in research aimed at understanding the biochemical and physiological aspects of the endocannabinoid system. This review will focus on some of the current cannabinergic ligands and probes and their pharmacological and therapeutic potential. (C) 2002 Published by Elsevier Science Ireland Ltd.
引用
收藏
页码:3 / 19
页数:17
相关论文
共 87 条
[1]   (R)-METHANANDAMIDE - A CHIRAL NOVEL ANANDAMIDE POSSESSING HIGHER POTENCY AND METABOLIC STABILITY [J].
ABADJI, V ;
LIN, SY ;
TAHA, G ;
GRIFFIN, G ;
STEVENSON, LA ;
PERTWEE, RG ;
MAKRIYANNIS, A .
JOURNAL OF MEDICINAL CHEMISTRY, 1994, 37 (12) :1889-1893
[2]   Cannabinoid receptor mediated inhibition of excitatory synaptic transmission in the rat hippocampal slice is developmentally regulated [J].
Al-Hayani, A ;
Davies, SN .
BRITISH JOURNAL OF PHARMACOLOGY, 2000, 131 (04) :663-665
[3]   Cannabinoids control spasticity and tremor in a multiple sclerosis model [J].
Baker, D ;
Pryce, G ;
Croxford, JL ;
Brown, P ;
Pertwee, RG ;
Huffman, JW ;
Layward, L .
NATURE, 2000, 404 (6773) :84-87
[4]   THE PERIPHERAL CANNABINOID RECEPTOR - ADENYLATE-CYCLASE INHIBITION AND G-PROTEIN COUPLING [J].
BAYEWITCH, M ;
AVIDORREISS, T ;
LEVY, R ;
BARG, J ;
MECHOULAM, R ;
VOGEL, Z .
FEBS LETTERS, 1995, 375 (1-2) :143-147
[5]   ANTINOCICEPTIVE (AMINOALKYL)INDOLES [J].
BELL, MR ;
DAMBRA, TE ;
KUMAR, V ;
EISSENSTAT, MA ;
HERRMANN, JL ;
WETZEL, JR ;
ROSI, D ;
PHILION, RE ;
DAUM, SJ ;
HLASTA, DJ ;
KULLNIG, RK ;
ACKERMAN, JH ;
HAUBRICH, DR ;
LUTTINGER, DA ;
BAIZMAN, ER ;
MILLER, MS ;
WARD, SJ .
JOURNAL OF MEDICINAL CHEMISTRY, 1991, 34 (03) :1099-1110
[6]   Functional role of high-affinity anandamide transport, as revealed by selective inhibition [J].
Beltramo, M ;
Stella, N ;
Calignano, A ;
Lin, SY ;
Makriyannis, A ;
Piomelli, D .
SCIENCE, 1997, 277 (5329) :1094-1097
[7]   Reversal of dopamine D2 receptor responses by an anandamide transport inhibitor [J].
Beltramo, M ;
de Fonseca, FR ;
Navarro, M ;
Calignano, A ;
Gorriti, MA ;
Grammatikopoulos, G ;
Sadile, AG ;
Giuffrida, A ;
Piomelli, D .
JOURNAL OF NEUROSCIENCE, 2000, 20 (09) :3401-3407
[8]   Exceptionally potent inhibitors of fatty acid amide hydrolase: The enzyme responsible for degradation of endogenous oleamide and anandamide [J].
Boger, DL ;
Sato, H ;
Lerner, AE ;
Hedrick, MP ;
Fecik, RA ;
Miyauchi, H ;
Wilkie, GD ;
Austin, BJ ;
Patricelli, MP ;
Cravatt, BF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (10) :5044-5049
[9]   The functional neuroanatomy of brain cannabinoid receptors [J].
Breivogel, CS ;
Childers, SR .
NEUROBIOLOGY OF DISEASE, 1998, 5 (06) :417-431
[10]   5'-AZIDO-DELTA-8-THC - A NOVEL PHOTOAFFINITY LABEL FOR THE CANNABINOID RECEPTOR [J].
CHARALAMBOUS, A ;
GUO, Y ;
HOUSTON, DB ;
HOWLETT, AC ;
COMPTON, DR ;
MARTIN, BR ;
MAKRIYANNIS, A .
JOURNAL OF MEDICINAL CHEMISTRY, 1992, 35 (16) :3076-3079