Global robustness with respect to the loss function and the prior

被引:5
作者
Abraham, C [1 ]
Daures, JP [1 ]
机构
[1] INRA, ENSA M, Unite Biometrie, F-34060 Montpellier 1, France
关键词
Bayesian Decision Theory; global robustness; loss function; mixture class;
D O I
10.1023/A:1005212125699
中图分类号
F [经济];
学科分类号
02 ;
摘要
We propose a class [I,S] of loss functions for modeling the imprecise preferences of the decision maker in Bayesian Decision Theory. This class is built upon two extreme loss functions I and S which reflect the limited information about the loss function. We give an approximation of the set of Bayes actions for every loss function in [I,S] and every prior in a mixture class; if the decision space is a subset of R, we obtain the exact set.
引用
收藏
页码:359 / 381
页数:23
相关论文
共 9 条
[1]  
ABRAHAM C, 1998, THESIS U MONTPELLIER
[2]  
[Anonymous], 1994, Test
[3]  
BERGER J. O., 2013, Statistical Decision Theory and Bayesian Analysis, DOI [10.1007/978-1-4757-4286-2, DOI 10.1007/978-1-4757-4286-2]
[4]   ROBUST BAYESIAN-ANALYSIS - SENSITIVITY TO THE PRIOR [J].
BERGER, JO .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1990, 25 (03) :303-328
[5]  
Berger JO, 1984, Robustness of Bayesian Analysis
[6]  
INSUA DR, 1994, J STAT PLANNING INFE, V48, P383
[7]  
INSUA DR, 1995, GEN MODEL INCOMPLETE
[8]   STABLE DECISION PROBLEMS [J].
KADANE, JB ;
CHUANG, DT .
ANNALS OF STATISTICS, 1978, 6 (05) :1095-1110
[9]   RANGES OF POSTERIOR MEASURES FOR PRIORS WITH UNIMODAL CONTAMINATIONS [J].
SIVAGANESAN, S ;
BERGER, JO .
ANNALS OF STATISTICS, 1989, 17 (02) :868-889