Relative volume comparison with integral curvature bounds

被引:127
作者
Petersen, P [1 ]
Wei, G
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s000390050036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we shall generalize the Bishop-Gromov relative volume comparison estimate to a situation where one only has an integral bound for the part of the Ricci curvature which lies below a given number. This will yield several compactness and pinching theorems.
引用
收藏
页码:1031 / 1045
页数:15
相关论文
共 6 条
[1]   CONVERGENCE AND RIGIDITY OF MANIFOLDS UNDER RICCI CURVATURE BOUNDS [J].
ANDERSON, MT .
INVENTIONES MATHEMATICAE, 1990, 102 (02) :429-445
[2]  
Anderson MT., 1991, Geom. Funct. Anal, V1, P231, DOI [DOI 10.1007/BF01896203, 10.1007/BF01896203]
[3]   SPECTRAL GEOMETRY IN DIMENSION-3 [J].
BROOKS, R ;
PERRY, P ;
PETERSEN, P .
ACTA MATHEMATICA, 1994, 173 (02) :283-305
[4]  
GALLOT S, 1988, ASTERISQUE, P191
[5]  
Petersen P., 1997, MATH SCI RES I PUBL, V30, P167, DOI DOI 10.2977/PRIMS/1195166127.MR1452874
[6]  
YANG D, 1992, ANN SCI ECOLE NORM S, V25, P77