A guided tour of the Trans-Proteomic Pipeline

被引:585
作者
Deutsch, Eric W. [1 ]
Mendoza, Luis [1 ]
Shteynberg, David [1 ]
Farrah, Terry [1 ]
Lam, Henry [2 ]
Tasman, Natalie [3 ]
Sun, Zhi [1 ]
Nilsson, Erik [3 ]
Pratt, Brian [3 ]
Prazen, Bryan [3 ]
Eng, Jimmy K. [4 ]
Martin, Daniel B. [1 ]
Nesvizhskii, Alexey I. [5 ,6 ]
Aebersold, Ruedi [1 ,7 ,8 ,9 ]
机构
[1] Inst Syst Biol, Seattle, WA 98103 USA
[2] Hong Kong Univ Sci & Technol, Hong Kong, Hong Kong, Peoples R China
[3] Insilicos LLC, Seattle, WA USA
[4] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
[5] Univ Michigan, Dept Pathol, Ann Arbor, MI 48109 USA
[6] Univ Michigan, Ctr Computat Med & Biol, Ann Arbor, MI 48109 USA
[7] ETH, Inst Mol Syst Biol, Zurich, Switzerland
[8] Univ Zurich, Fac Sci, Zurich, Switzerland
[9] Ctr Syst Physiol & Metab Dis, Zurich, Switzerland
基金
美国国家卫生研究院;
关键词
Bioinformatics; MS/MS; Protein identification; TANDEM MASS-SPECTROMETRY; PEPTIDE IDENTIFICATION; STATISTICAL VALIDATION; PROTEIN IDENTIFICATION; DATABASE SEARCH; SPECTRAL DATA; SOFTWARE; STRATEGY; SYSTEM; MS/MS;
D O I
10.1002/pmic.200900375
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The Trans-Proteomic Pipeline (TPP) is a suite of software tools for the analysis of MS/MS data sets. The tools encompass most of the steps in a proteomic data analysis workflow in a single, integrated software system. Specifically, the TPP supports all steps from spectrometer output file conversion to protein-level statistical validation, including quantification by stable isotope ratios. We describe here the full workflow of the TPP and the tools therein, along with an example on a sample data set, demonstrating that the setup and use of the tools are straightforward and well supported and do not require specialized informatic resources or knowledge.
引用
收藏
页码:1150 / 1159
页数:10
相关论文
共 52 条
[1]   Mass spectrometry-based proteomics [J].
Aebersold, R ;
Mann, M .
NATURE, 2003, 422 (6928) :198-207
[2]   Quantitative mass spectrometry in proteomics: a critical review [J].
Bantscheff, Marcus ;
Schirle, Markus ;
Sweetman, Gavain ;
Rick, Jens ;
Kuster, Bernhard .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2007, 389 (04) :1017-1031
[3]  
Bradshaw RA, 2005, MOL CELL PROTEOMICS, V4, P1223
[4]   Reporting protein identification data - The next generation of guidelines [J].
Bradshaw, RA ;
Burlingame, AL ;
Carr, S ;
Aebersold, R .
MOLECULAR & CELLULAR PROTEOMICS, 2006, 5 (05) :787-788
[5]   False discovery rates and related statistical concepts in mass spectrometry-based proteomics [J].
Choi, Hyungwon ;
Nesvizhskii, Alexey I. .
JOURNAL OF PROTEOME RESEARCH, 2008, 7 (01) :47-50
[6]   Semisupervised model-based validation of peptide identifications in mass spectrometry-based proteomics [J].
Choi, Hyungwon ;
Nesvizhskii, Alexey I. .
JOURNAL OF PROTEOME RESEARCH, 2008, 7 (01) :254-265
[7]   Statistical validation of peptide identifications in large-scale proteomics using the target-decoy database search strategy and flexible mixture modeling [J].
Choi, Hyungwon ;
Ghosh, Debashis ;
Nesvizhskii, Alexey I. .
JOURNAL OF PROTEOME RESEARCH, 2008, 7 (01) :286-292
[8]   High-performance peptide identification by tandem mass spectrometry allows reliable automatic data processing in proteomics [J].
Colinge, J ;
Masselot, A ;
Cusin, I ;
Mahé, E ;
Niknejad, A ;
Argoud-Puy, G ;
Reffas, S ;
Bederr, N ;
Gleizes, A ;
Rey, PA ;
Bougueleret, L .
PROTEOMICS, 2004, 4 (07) :1977-1984
[9]   MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification [J].
Cox, Juergen ;
Mann, Matthias .
NATURE BIOTECHNOLOGY, 2008, 26 (12) :1367-1372
[10]   TANDEM: matching proteins with tandem mass spectra [J].
Craig, R ;
Beavis, RC .
BIOINFORMATICS, 2004, 20 (09) :1466-1467