Connections of the retrosplenial granular b cortex in the rat

被引:246
作者
van Groen, T
Wyss, JM
机构
[1] Univ Alabama, Dept Cell Biol, Birmingham, AL 35294 USA
[2] Univ Kuopio, Dept Neurol & Neurosci, FIN-70211 Kuopio, Finland
[3] Kuopio Univ Hosp, Dept Neurol, FIN-70211 Kuopio, Finland
关键词
anterior thalamic nuclei; cingulate cortex; hippocampus; limbic system; Papez circuit;
D O I
10.1002/cne.10757
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Although the retrosplenial granular b cortex (Rgb) is situated in a critical position between the hippocampal formation and the neocortex, surprisingly few studies have examined its connections carefully. The present experiments use both anterograde and retrograde tracing techniques to characterize the connections of Rgb. The main cortical projections from Rgb are to the caudal part of the anterior cingulate cortex, area 18b, retrosplenial granular a cortex (Rga), and postsubiculum, and less dense terminal fields are present in the prelimbic and caudal occipital cortices. The major subcortical projections are to the anterior thalamic nuclei and the rostral pontine nuclei, and very small terminal fields are present in the caudal dorsomedial part of the striatum, the reuniens and reticular nuclei of the thalamus, and the mammillary bodies. Contralaterally, Rgb primarily projects to itself, i.e., hornotypically, and more sparsely projects to Rga and postsubiculum. In general, the axons from Rgb terminate ipsilaterally in cortical layers I and III-V and contralaterally in layer V, with a smaller number of terminals in layers I and VI. Thalamic projections from Rgb target the anteroventral and laterodorsal nuclei of the thalamus, with only a few axons terminating in the anterodorsal nucleus, the reticular nucleus, and the nucleus reuniens of the thalamus. Rgb is innervated by the anterior cingulate cortex, precentral agranular cortex, cortical area 18b, dorsal subiculum, and postsubiculum. Subcortical projections to Rgb originate mainly in the claustrum, the horizontal limb of the diagonal band of Broca, and the anterior thalamic nuclei. These data demonstrate that, in the rat, Rgb is a major nodal point for the integration and subsequent distribution of information to and from the hippocampal formation, the midline limbic and visual cortices, and the thalamus. Thus, similarly to the entorhinal cortex, Rgb in the rat is a prominent gateway for information exchange between the hippocampal formation and other limbic areas of the brain.
引用
收藏
页码:249 / 263
页数:15
相关论文
共 82 条
[1]   Neural systems underlying episodic memory: insights from animal research [J].
Aggleton, JP ;
Pearce, JM .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2001, 356 (1413) :1467-1482
[2]  
Aggleton JP, 1999, BEHAV BRAIN SCI, V22, P425
[3]   Differential effect of thalamic and cortical lesions on memory systems in the rat [J].
Alexinsky, T .
BEHAVIOURAL BRAIN RESEARCH, 2001, 122 (02) :175-191
[4]  
BASSETT JL, 1982, BRAIN RES, V248, P371, DOI 10.1016/0006-8993(82)90597-2
[5]   ALZHEIMERS-DISEASE AFFECTS LIMBIC NUCLEI OF THE THALAMUS [J].
BRAAK, H ;
BRAAK, E .
ACTA NEUROPATHOLOGICA, 1991, 81 (03) :261-268
[6]   The human hippocampus and spatial and episodic memory [J].
Burgess, N ;
Maguire, EA ;
O'Keefe, J .
NEURON, 2002, 35 (04) :625-641
[7]   HEAD-DIRECTION CELLS IN THE RAT POSTERIOR CORTEX .1. ANATOMICAL DISTRIBUTION AND BEHAVIORAL MODULATION [J].
CHEN, LL ;
LIN, LH ;
GREEN, EJ ;
BARNES, CA ;
MCNAUGHTON, BL .
EXPERIMENTAL BRAIN RESEARCH, 1994, 101 (01) :8-23
[8]   Temporary inactivation of the retrosplenial cortex causes a transient reorganization of spatial coding in the hippocampus [J].
Cooper, BG ;
Mizumori, SJY .
JOURNAL OF NEUROSCIENCE, 2001, 21 (11) :3986-4001
[9]   Finding your way in the dark: The retrosplenial cortex contributes to spatial memory and navigation without visual cues [J].
Cooper, BG ;
Manka, TF ;
Mizumori, SJY .
BEHAVIORAL NEUROSCIENCE, 2001, 115 (05) :1012-1028
[10]   The hippocampus and declarative memory: cognitive mechanisms and neural codes [J].
Eichenbaum, H .
BEHAVIOURAL BRAIN RESEARCH, 2001, 127 (1-2) :199-207