Proximal alternating directions method for structured variational inequalities

被引:35
作者
Xu, M. H. [1 ]
机构
[1] Jiangsu Polytech Univ, Dept Informat Sci, Changzhou, Jiangsu, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210008, Peoples R China
基金
中国国家自然科学基金;
关键词
structured variational inequalities; proximal point algorithm; alternating directions method;
D O I
10.1007/s10957-007-9192-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In the alternating directions method, the relaxation factor gamma is an element of (0, root 5+1/2) by Glowinski is useful in practical computations for structured variational inequalities. This paper points out that the same restriction region of the relaxation factor is also valid in the proximal alternating directions method.
引用
收藏
页码:107 / 117
页数:11
相关论文
共 14 条
[1]  
Eckstein J., 1994, LARGE SCALE OPTIMIZA
[2]  
Eckstein J., 1994, OPTIM METHOD SOFTW, V4, P75, DOI [10.1080/10556789408805578, DOI 10.1080/10556789408805578]
[3]  
Fukushima M., 1992, COMPUT OPTIM APPL, V2, P93
[4]  
Gabay D., 1976, Computers & Mathematics with Applications, V2, P17, DOI 10.1016/0898-1221(76)90003-1
[5]  
Gabay D., 1983, AUGMENTED LAGRANGIAN, V15, P299, DOI DOI 10.1016/S0168-2024(08)70034-1
[6]  
Glowinski R, 1984, NUMERICAL METHODS NO
[7]  
GLOWINSKI R, 1989, SIAM STUDIES APPL MA
[8]   Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities [J].
He, BS ;
Yang, H .
OPERATIONS RESEARCH LETTERS, 1998, 23 (3-5) :151-161
[9]  
He BS, 2003, J COMPUT MATH, V21, P495
[10]   A variable-penalty alternating directions method for convex optimization [J].
Kontogiorgis, S ;
Meyer, RR .
MATHEMATICAL PROGRAMMING, 1998, 83 (01) :29-53