Factors influencing the titer and infectivity of lentiviral vectors

被引:84
作者
Logan, AC
Nightingale, SJ
Haas, DL
Cho, GJ
Pepper, KA
Kohn, DB
机构
[1] Childrens Hosp Los Angeles, Div Res Immunol Bone Marrow Transplantat, Los Angeles, CA 90027 USA
[2] Univ So Calif, Keck Sch Med, Dept Mol Microbiol & Immunol, Los Angeles, CA 90033 USA
关键词
D O I
10.1089/hum.2004.15.976
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Lentiviral vectors have undergone several generations of design improvement to enhance their biosafety and expression characteristics, and have been approved for use in human clinical studies. Most preclinical studies with these vectors have employed easily assayed marker genes for the purpose of determining vector titers and transduction efficiencies. Naturally, the adaptation of these vector systems to clinical use will increasingly involve the transfer of genes whose products may not be easily measured, meaning that the determination of vector titer will be more complicated. One method for determining vector titer that can be universally employed on all human immunodeficiency virus type 1-based lentiviral vector supernatants involves the measurement of Gag (p24) protein concentration in vector supernatants by immunoassay. We have studied the effects that manipulation of several variables involved in vector design and production by transient transfection have on vector titer and infectivity. We have determined that manipulation of the amount of transfer vector, packaging, and envelope plasmids used to transfect the packaging cells does not alter vector infectivity, but does influence vector titer. We also found that modifications to the transfer vector construct, such as replacing the internal promoter or transgene, do not generally alter vector infectivity, whereas inclusion of the central polypurine tract in the transfer vector increases vector infectivity on HEK293 cells and human umbilical cord blood CD34(+) hematopoietic progenitor cells (HPCs). The infectivities of vector supernatants can also be increased by harvesting at early time points after the initiation of vector production, collection in serum-free medium, and concentration by ultracentrifugation. For the transduction of CD34(+) HPCs, we found that the simplest method of increasing vector infectivity is to pseudotype vector particles with the RD114 envelope instead of vesicular stomatitis virus G glycoprotein (VSV-G).
引用
收藏
页码:976 / 988
页数:13
相关论文
共 39 条
[1]   PRODUCTION OF ACQUIRED IMMUNODEFICIENCY SYNDROME-ASSOCIATED RETROVIRUS IN HUMAN AND NONHUMAN CELLS TRANSFECTED WITH AN INFECTIOUS MOLECULAR CLONE [J].
ADACHI, A ;
GENDELMAN, HE ;
KOENIG, S ;
FOLKS, T ;
WILLEY, R ;
RABSON, A ;
MARTIN, MA .
JOURNAL OF VIROLOGY, 1986, 59 (02) :284-291
[2]   Maximal lentivirus-mediated gene transfer and sustained transgene expression in human hematopoietic primitive cells and their progeny [J].
Amsellem, S ;
Ravet, E ;
Fichelson, S ;
Pflumio, F ;
Dubart-Kupperschmitt, A .
MOLECULAR THERAPY, 2002, 6 (05) :673-677
[3]   VESICULAR STOMATITIS-VIRUS G GLYCOPROTEIN PSEUDOTYPED RETROVIRAL VECTORS - CONCENTRATION TO VERY HIGH-TITER AND EFFICIENT GENE-TRANSFER INTO MAMMALIAN AND NONMAMMALIAN CELLS [J].
BURNS, JC ;
FRIEDMANN, T ;
DRIEVER, W ;
BURRASCANO, M ;
YEE, JK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (17) :8033-8037
[4]   Stable transduction of quiescent CD34+CD38- human hematopoietic cells by HIV-1-based lentiviral vectors [J].
Case, SS ;
Price, MA ;
Jordan, CT ;
Yu, XJ ;
Wang, LJ ;
Bauer, G ;
Haas, DL ;
Xu, DK ;
Stripecke, R ;
Naldini, L ;
Kohn, DB ;
Crooks, GM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (06) :2988-2993
[5]   MULTIPLE MODIFICATIONS IN CIS-ELEMENTS OF THE LONG TERMINAL REPEAT OF RETROVIRAL VECTORS LEAD TO INCREASED EXPRESSION AND DECREASED DNA METHYLATION IN EMBRYONIC CARCINOMA-CELLS [J].
CHALLITA, PM ;
SKELTON, D ;
ELKHOUEIRY, A ;
YU, XJ ;
WEINBERG, K ;
KOHN, DB .
JOURNAL OF VIROLOGY, 1995, 69 (02) :748-755
[6]   A third-generation lentivirus vector with a conditional packaging system [J].
Dull, T ;
Zufferey, R ;
Kelly, M ;
Mandel, RJ ;
Nguyen, M ;
Trono, D ;
Naldini, L .
JOURNAL OF VIROLOGY, 1998, 72 (11) :8463-8471
[7]   Reassessment of the roles of integrase and the central DNA flap in human immunodeficiency virus type 1 nuclear import [J].
Dvorin, JD ;
Bell, P ;
Maul, GG ;
Yamashita, M ;
Emerman, M ;
Malim, MH .
JOURNAL OF VIROLOGY, 2002, 76 (23) :12087-12096
[8]   Human cord blood CD34+CD38- cell transduction via lentivirus-based gene transfer vectors [J].
Evans, JT ;
Kelly, PF ;
O'Neill, E ;
Garcia, JV .
HUMAN GENE THERAPY, 1999, 10 (09) :1479-1489
[9]   Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences [J].
Follenzi, A ;
Ailles, LE ;
Bakovic, S ;
Geuna, M ;
Naldini, L .
NATURE GENETICS, 2000, 25 (02) :217-+
[10]   Biodistribution of the RD114/mammalian type D retrovirus receptor, RDR [J].
Greens, BJ ;
Lee, CS ;
Rasko, JEJ .
JOURNAL OF GENE MEDICINE, 2004, 6 (03) :249-259