Cyclin-dependent kinase-9 - An RNAPII kinase at the nexus of cardiac growth and death cascades

被引:43
作者
Sano, M
Schneider, MD
机构
[1] Baylor Coll Med, Ctr Cardiovasc Dev, Houston, TX 77030 USA
[2] Baylor Coll Med, Dept Med, Houston, TX 77030 USA
[3] Baylor Coll Med, Dept Mol & Cellular Biol, Houston, TX 77030 USA
[4] Baylor Coll Med, Dept Mol Physiol & Biophys, Houston, TX 77030 USA
关键词
apoptosis; cyclin-dependent kinases; hypertrophy; mitochondria; perioxisome proliferator activated receptor-gamma coactivator-1;
D O I
10.1161/01.RES.0000146675.88354.04
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Over the past decade and a half, the paradigm has emerged of cardiac hypertrophy and ensuing heart failure as fundamentally a problem in signal transduction, impinging on the altered expression or function of gene-specific transcription factors and their partners, which then execute the hypertrophic phenotype. Strikingly, RNA polymerase II (RNAPII) is itself a substrate for two protein kinases - the cyclin-dependent kinases Cdk7 and Cdk9 - that are activated by hypertrophic cues. Phosphorylation of RNAPII in the carboxyl terminal domain (CTD) of its largest subunit controls a number of critical steps subsequent to transcription initiation, among them enabling RNAPII to overcome its stalling in the promoter - proximal region and to engage in efficient transcription elongation. Here, we summarize our current understanding of the RNAPII-directed protein kinases in cardiac hypertrophy. Cdk9 activation is essential in tissue culture for myocyte enlargement and sufficient in transgenic mice for hypertrophy to occur and yet is unrelated to the "fetal" gene program that is typical of pathophysiological heart growth. Although this trophic effect of Cdk9 appears benign superficially, pathophysiological levels of Cdk9 activity render myocardium remarkably susceptible to apoptotic stress. Cdk9 interacts adversely with Gq-dependent pathways for hypertrophy, impairing the expression of numerous genes for mitochondrial proteins, and, in particular, suppressing master regulators of mitochondrial biogenesis and function, perioxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1), and nuclear respiratory factor-1 (NRF-1). Given the dual transcriptional roles of Cdk9 in hypertrophic growth and mitochondrial dysfunction, we suggest the potential usefulness of Cdk9 as a target in heart failure drug discovery.
引用
收藏
页码:867 / 876
页数:10
相关论文
共 106 条
[1]   A Ras-dependent pathway regulates RNA polymerase II phosphorylation in cardiac myocytes: Implications for cardiac hypertrophy [J].
Abdellatif, M ;
Packer, SE ;
Michael, LH ;
Zhang, D ;
Charng, MJ ;
Schneider, MD .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (11) :6729-6736
[2]   Enhanced Gαq signaling:: A common pathway mediates cardiac hypertrophy and apoptotic heart failure [J].
Adams, JW ;
Sakata, Y ;
Davis, MG ;
Sah, VP ;
Wang, YB ;
Liggett, SB ;
Chien, KR ;
Brown, JH ;
Dorn, GW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (17) :10140-10145
[3]   Phosphorylation of serine 2 within the RNA polymerase IIC-terminal domain couples transcription and 3′ end processing [J].
Ahn, SH ;
Kim, M ;
Buratowski, S .
MOLECULAR CELL, 2004, 13 (01) :67-76
[4]   Roles of cardiac transcription factors in cardiac hypertrophy [J].
Akazawa, H ;
Komuro, I .
CIRCULATION RESEARCH, 2003, 92 (10) :1079-1088
[5]   THE C-TERMINAL DOMAIN OF THE LARGEST SUBUNIT OF RNA POLYMERASE-II OF SACCHAROMYCES-CEREVISIAE, DROSOPHILA-MELANOGASTER, AND MAMMALS - A CONSERVED STRUCTURE WITH AN ESSENTIAL FUNCTION [J].
ALLISON, LA ;
WONG, JKC ;
FITZPATRICK, VD ;
MOYLE, M ;
INGLES, CJ .
MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (01) :321-329
[6]   Divergent transcriptional responses to independent genetic causes of cardiac hypertrophy [J].
Aronow, BJ ;
Toyokawa, T ;
Canning, A ;
Haghighi, K ;
Delling, U ;
Kranias, E ;
Molkentin, JD ;
Dorn, GW .
PHYSIOLOGICAL GENOMICS, 2001, 6 (01) :19-28
[7]   Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1 [J].
Baar, K ;
Wende, AR ;
Jones, TE ;
Marison, M ;
Nolte, LA ;
Chen, M ;
Kelly, DP ;
Holloszy, JO .
FASEB JOURNAL, 2002, 16 (14) :1879-1886
[8]   NF-κB binds P-TEFb to stimulate transcriptional elongation by RNA polymerase II [J].
Barboric, M ;
Nissen, RM ;
Kanazawa, S ;
Jabrane-Ferrat, N ;
Peterlin, BM .
MOLECULAR CELL, 2001, 8 (02) :327-337
[9]   The mRNA assembly line: transcription and processing machines in the same factory [J].
Bentley, D .
CURRENT OPINION IN CELL BIOLOGY, 2002, 14 (03) :336-342
[10]   Strange bedfellows: polyadenylation factors at the promoter [J].
Calvo, O ;
Manley, JL .
GENES & DEVELOPMENT, 2003, 17 (11) :1321-1327