Liquid-phase broadband cavity-enhanced absorption spectroscopy measurements in a 2 mm cuvette

被引:32
作者
Islam, Meez [1 ]
Seetohul, L. Nitin [1 ]
Ali, Zulfiqur [1 ]
机构
[1] Univ Teesside, Sch Sci & Technol, Middlesbrough TS1 3BA, Cleveland, England
关键词
broadband cavity-enhanced absorption spectroscopy; BBCEAS; liquids; absorption detection; light emitting diode; LED;
D O I
10.1366/000370207781269846
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A novel implementation of broadband cavity enhanced absorption spectroscopy (BBCEAS) has been used to perform sensitive visible wavelength measurements on liquid-phase solutions in a 2 mm cuvette placed at normal incidence to the cavity mirrors. The overall experimental methodology was simple, low cost, and similar to conventional ultraviolet-visible absorption spectroscopy. The cavity was formed by two concave high reflectivity mirrors. Three mirror sets with nominal reflectivities (R) of R = 0.99, 0.9945, and 0.999 were used. The light source consisted of a high intensity red, green, blue, or white LED. The detector was a compact charge-coupled device (CCD) spectrograph. Measurements were made on the representative analytes, Ho3+, and the dyes brilliant blue-R, sudan black, and coumarin 334 in appropriate solvents. Cavity enhancement factors (CEF) of up to 104 passes for the high reflectivity mirrors were obtained. The number of passes was limited by relatively high scattering and absorption losses in the cavity, of similar to 1 x 10(-1) per pass. Measurements over a wide wavelength range (420-670 nm) were also obtained in a single experiment with the white LED and the R = 0.99 mirror set for Ho3+ and sudan black. The sensitivity of the experimental setup could be determined by calculating the minimum detectable change in the absorption coefficient alpha(min). The values ranged from 5.1 x 10(-5) to 1.2 x 10(-3) cm(-1). The limit of detection (LOD) for the strong absorber brilliant blue-R was 620 pM. A linear dynamic range of measurements of concentration over about two orders of magnitude was demonstrated. The overall sensitivity of the experimental setup compared very favorably with previous generally more experimentally complex and expensive liquid-phase cavity studies. Possible improvements to the technique an ts applicability as an analytical tool are discussed.
引用
收藏
页码:649 / 658
页数:10
相关论文
共 30 条
[1]   Flowing liquid-sheet jet for cavity ring-down absorption measurements [J].
Alexander, A. J. .
ANALYTICAL CHEMISTRY, 2006, 78 (15) :5597-5600
[2]   Reaction kinetics of nitrate radicals with terpenes in solution studied by cavity ring-down spectroscopy [J].
Alexander, AJ .
CHEMICAL PHYSICS LETTERS, 2004, 393 (1-3) :138-142
[3]   Solving chemical problems of environmental importance using cavity ring-down spectroscopy [J].
Atkinson, DB .
ANALYST, 2003, 128 (02) :117-125
[4]   Miniaturized cavity ring-down detection in a liquid flow cell [J].
Bahnev, B ;
van der Sneppen, L ;
Wiskerke, AE ;
Ariese, F ;
Gooijer, C ;
Ubachs, W .
ANALYTICAL CHEMISTRY, 2005, 77 (04) :1188-1191
[5]   Broadband cavity enhanced absorption spectroscopy using light emitting diodes [J].
Ball, SM ;
Langridge, JM ;
Jones, RL .
CHEMICAL PHYSICS LETTERS, 2004, 398 (1-3) :68-74
[6]   Broad-band cavity ring-down spectroscopy [J].
Ball, SM ;
Jones, RL .
CHEMICAL REVIEWS, 2003, 103 (12) :5239-5262
[7]   Moving beyond traditional UV-visible absorption detection: Cavity ring-down spectroscopy for HPLC [J].
Bechtel, KL ;
Zare, RN ;
Kachanov, AA ;
Sanders, SS ;
Paldus, BA .
ANALYTICAL CHEMISTRY, 2005, 77 (04) :1177-1182
[8]   Cavity ring-down spectroscopy: Experimental schemes and applications [J].
Berden, G ;
Peeters, R ;
Meijer, G .
INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 2000, 19 (04) :565-607
[9]   Fiber-loop ring-down spectroscopy [J].
Brown, RS ;
Kozin, I ;
Tong, Z ;
Oleschuk, RD ;
Loock, HP .
JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (23) :10444-10447
[10]   Absorption spectroscopy in high-finesse cavities for atmospheric studies [J].
Brown, SS .
CHEMICAL REVIEWS, 2003, 103 (12) :5219-5238