ProbABEL package for genome-wide association analysis of imputed data

被引:314
作者
Aulchenko, Yurii S. [1 ,2 ]
Struchalin, Maksim V. [1 ]
van Duijn, Cornelia M. [1 ]
机构
[1] Erasmus MC, Dept Epidemiol, NL-3000 CA Rotterdam, Netherlands
[2] RAS, Inst Cytol & Genet, SD, Novosibirsk 630090, Russia
来源
BMC BIOINFORMATICS | 2010年 / 11卷
基金
俄罗斯基础研究基金会;
关键词
MIXED-MODEL; IMPUTATION; POWER; LOCI;
D O I
10.1186/1471-2105-11-134
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Over the last few years, genome-wide association (GWA) studies became a tool of choice for the identification of loci associated with complex traits. Currently, imputed single nucleotide polymorphisms (SNP) data are frequently used in GWA analyzes. Correct analysis of imputed data calls for the implementation of specific methods which take genotype imputation uncertainty into account. Results: We developed the ProbABEL software package for the analysis of genome-wide imputed SNP data and quantitative, binary, and time-till-event outcomes under linear, logistic, and Cox proportional hazards models, respectively. For quantitative traits, the package also implements a fast two-step mixed model-based score test for association in samples with differential relationships, facilitating analysis in family-based studies, studies performed in human genetically isolated populations and outbred animal populations. Conclusions: ProbABEL package provides fast efficient way to analyze imputed data in genome-wide context and will facilitate future identification of complex trait loci.
引用
收藏
页数:10
相关论文
共 30 条
  • [1] Merlin-rapid analysis of dense genetic maps using sparse gene flow trees
    Abecasis, GR
    Cherny, SS
    Cookson, WO
    Cardon, LR
    [J]. NATURE GENETICS, 2002, 30 (01) : 97 - 101
  • [2] A Genomic Background Based Method for Association Analysis in Related Individuals
    Amin, Najaf
    van Duijn, Cornelia M.
    Aulchenko, Yurii S.
    [J]. PLOS ONE, 2007, 2 (12):
  • [3] Evaluating the effects of imputation on the power, coverage, and cost efficiency of genome-wide SNP platforms
    Anderson, Carl A.
    Pettersson, Fredrik H.
    Barrett, Jeffrey C.
    Zhuang, Joanna J.
    Ragoussis, Jiannis
    Cardon, Lon R.
    Morris, Andrew P.
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2008, 83 (01) : 112 - 119
  • [4] Astle W., Statistical Science
  • [5] Genomewide rapid association using mixed model and regression: A fast and simple method for genomewide pedigree-based quantitative trait loci association analysis
    Aulchenko, Yurii S.
    de Koning, Dirk-Jan
    Haley, Chris
    [J]. GENETICS, 2007, 177 (01) : 577 - 585
  • [6] GenABEL: an R library for genome-wide association analysis
    Aulchenko, Yurii S.
    Ripke, Stephan
    Isaacs, Aaron
    Van Duijn, Cornelia M.
    [J]. BIOINFORMATICS, 2007, 23 (10) : 1294 - 1296
  • [7] Linkage analysis of adult height in a large pedigree from a Dutch genetically isolated population
    Axenovich, Tatiana I.
    Zorkoltseva, I. V.
    Belonogova, N. M.
    Struchalin, M. V.
    Kirichenko, A. V.
    Kayser, M.
    Oostra, B. A.
    van Duijn, C. M.
    Aulchenko, Y. S.
    [J]. HUMAN GENETICS, 2009, 126 (03) : 457 - 471
  • [8] Family-based association tests for genomewide association scans
    Chen, Wei-Min
    Abecasis, Goncalo R.
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2007, 81 (05) : 913 - 926
  • [9] An R package for analysis of whole-genome association studies
    Clayton, David
    Leung, Hin-Tak
    [J]. HUMAN HEREDITY, 2007, 64 (01) : 45 - 51
  • [10] Genomic control for association studies
    Devlin, B
    Roeder, K
    [J]. BIOMETRICS, 1999, 55 (04) : 997 - 1004