Oscillating foils of high propulsive efficiency

被引:891
作者
Anderson, JM [1 ]
Streitlien, K
Barrett, DS
Triantafyllou, MS
机构
[1] MIT, Dept Ocean Engn, Cambridge, MA 02139 USA
[2] Charles Stark Draper Lab Inc, Cambridge, MA 02139 USA
关键词
D O I
10.1017/S0022112097008392
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Thrust-producing harmonically oscillating foils are studied through force and power measurements, as well as visualization data, to classify the principal characteristics of the flow around and in the wake of the foil. Visualization data are obtained using digital particle image velocimetry at Reynolds number 1100, and force and power data are measured at Reynolds number 40 000. The experimental results are compared with theoretical predictions of linear and nonlinear inviscid theory and it is found that agreement between theory and experiment is good over a certain parametric range, when the wake consists of an array of alternating vortices and either very weak or no leading-edge vortices form. High propulsive efficiency, as high as 87%, is measured experimentally under conditions of optimal wake formation. Visualization results elucidate the basic mechanisms involved and show that conditions of high efficiency are associated with the formation on alternating sides of the foil of a moderately strong leading-edge vortex per half-cycle, which is convected downstream and interacts with trailing-edge vorticity, resulting eventually in the formation of a reverse Karman street. The phase angle between transverse oscillation and angular motion is the critical parameter affecting the interaction of leading-edge and trailing-edge vorticity, as well as the efficiency of propulsion.
引用
收藏
页码:41 / 72
页数:32
相关论文
共 48 条
[1]  
Anderson JM, 1996, THESIS MIT
[2]  
Batchelor G., 2000, CAMBRIDGE MATH LIB
[3]   PROPULSION OF A FIN WHALE (BALAENOPTERA-PHYSALUS) - WHY THE FIN WHALE IS A FAST SWIMMER [J].
BOSE, N ;
LIEN, J .
PROCEEDINGS OF THE ROYAL SOCIETY SERIES B-BIOLOGICAL SCIENCES, 1989, 237 (1287) :175-200
[4]   LUNATE-TAIL SWIMMING PROPULSION AS A PROBLEM OF CURVED LIFTING LINE IN UNSTEADY-FLOW .1. ASYMPTOTIC THEORY [J].
CHENG, HK ;
MURILLO, LE .
JOURNAL OF FLUID MECHANICS, 1984, 143 (JUN) :327-350
[5]   EXPERIMENTAL-STUDY OF OSCILLATING-WING PROPULSION [J].
DELAURIER, JD ;
HARRIS, JM .
JOURNAL OF AIRCRAFT, 1982, 19 (05) :368-373
[7]   PROPULSIVE VORTICAL SIGNATURE OF PLUNGING AND PITCHING AIRFOILS [J].
FREYMUTH, P .
AIAA JOURNAL, 1988, 26 (07) :881-883
[8]   THRUST GENERATION BY AN AIRFOIL IN HOVER MODES [J].
FREYMUTH, P .
EXPERIMENTS IN FLUIDS, 1990, 9 (1-2) :17-24
[9]   ACTIVE VORTICITY CONTROL IN A SHEAR-FLOW USING A FLAPPING FOIL [J].
GOPALKRISHNAN, R ;
TRIANTAFYLLOU, MS ;
TRIANTAFYLLOU, GS ;
BARRETT, D .
JOURNAL OF FLUID MECHANICS, 1994, 274 :1-21
[10]  
GREYDANUS JH, 1952, F103 NAT LUCHTV LAB