The decomposition and removal of poly(amidoamine) (PAMAM) dendrimers from inorganic metal oxide surfaces frequently used as catalyst supports was investigated by the use of FT-IR spectroscopy. Spectra of fourth-generation hydroxyl-terminated PAMAM dendrimers (G4OH) on gamma-Al2O3 were collected first at room temperature and were subsequently analyzed with all bands assigned to the vibrational frequencies of dendrimer functional groups. Bands corresponding to amide and ethylenic groups decrease in intensity upon heating at 150 degrees C, while new bands corresponding to surface carboxylate species appear in their stead. Thus, the process of dendrimer removal occurs in two stages: dendrimer decomposition to form adsorbed carboxylates followed by the removal of these carboxylates from the surface. The dendrimer generation (i.e., G3OH vs G4OH) does not affect the rate of this process. However, the temperature required for completion of the first stage rises with increasing G4OH weight loading. Other factors that influence the rate of overall dendrimer removal were found to include the type of gas-phase environment used and the presence or absence of metal species within the dendrimer. Specifically, an oxidizing environment, or the presence of either platinum or rhodium, facilitates complete dendrimer removal at lower temperatures. Finally, although the rate of dendrimer removal is very similar on both alumina and zirconia, the conformations of the adsorbed dendrimers on these supports are different.