Binding site analysis of cellulose binding domain CBDN1 from endoglucanse C of Cellulomonas fimi by site-directed mutagenesis

被引:33
作者
Kormos, J
Johnson, PE
Brun, E
Tomme, P
McIntosh, LP
Haynes, CA
Kilburn, DG
机构
[1] Univ British Columbia, Dept Microbiol & Immunol, Vancouver, BC V6T 1Z3, Canada
[2] Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z3, Canada
[3] Univ British Columbia, Dept Biochem & Mol Biol, Vancouver, BC V6T 1Z3, Canada
[4] Univ British Columbia, Chem Engn & Biotechnol Lab, Vancouver, BC V6T 1Z3, Canada
关键词
D O I
10.1021/bi000607s
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Endoglucanase C (CenC), a beta 1,4 glucanase from the soil bacterium Cellulomonas fimi, binds to amorphous cellulose via two homologous cellulose binding domains, termed CBDN1 and CBDN2. in this work, the contributions of 10 amino acids within the binding cleft of CBDN1 were evaluated by single site-directed mutations to alanine residues. Each isolated domain containing a single mutation was analyzed for binding to an insoluble amorphous preparation of cellulose, phosphoric acid swollen Avicel (PASA), and to a soluble glucopyranoside polymer, barley beta-glucan. The effect of any given mutation on CBD binding was similar for both substrates, suggesting that the mechanism of binding to soluble and insoluble substrates is the same. Tyrosines 19 and 85 were essential for tight binding by CBDN1 as their replacement by alanine results in affinity decrements of approximately 100-fold on PASA, barley beta-glucan, and soluble cellooligosaccharides. The tertiary structures of unbound Y19A and Y85A were assessed by heteronuclear single quantum coherence (HSQC) spectroscopy. These studies indicated that the structures of both mutants were perturbed but that all perturbations are very near to the site of mutation.
引用
收藏
页码:8844 / 8852
页数:9
相关论文
共 59 条
[1]   Probing the role of tryptophan residues in a cellulose-binding domain by chemical modification [J].
Bray, MR ;
Johnson, PE ;
Gilkes, NR ;
McIntosh, LP ;
Kilburn, DG ;
Warren, RAJ .
PROTEIN SCIENCE, 1996, 5 (11) :2311-2318
[2]   Structure and binding specificity of the second N-terminal cellulose-binding domain from Cellulomonas fimi endoglucanase C [J].
Brun, E ;
Johnson, PE ;
Creagh, AL ;
Tomme, P ;
Webster, P ;
Haynes, CA ;
McIntosh, LP .
BIOCHEMISTRY, 2000, 39 (10) :2445-2458
[3]   Solution structure of the cellulose-binding domain of the endoglucanase Z secreted by Erwinia chrysanthemi [J].
Brun, E ;
Moriaud, F ;
Gans, P ;
Blackledge, MJ ;
Barras, F ;
Marion, D .
BIOCHEMISTRY, 1997, 36 (51) :16074-16086
[4]   Selective binding of N-acetylglucosamine to the chicken hepatic lectin [J].
Burrows, L ;
Iobst, ST ;
Drickamer, K .
BIOCHEMICAL JOURNAL, 1997, 324 :673-680
[5]   Alanine point-mutations in the reactive region of bovine pancreatic trypsin inhibitor: Effects on the kinetics and thermodynamics of binding to beta-trypsin and alpha-chymotrypsin [J].
Castro, MJM ;
Anderson, S .
BIOCHEMISTRY, 1996, 35 (35) :11435-11446
[6]   ENTHALPY OF HYDROGEN-BOND FORMATION IN A PROTEIN-LIGAND BINDING REACTION [J].
CONNELLY, PR ;
ALDAPE, RA ;
BRUZZESE, FJ ;
CHAMBERS, SP ;
FITZGIBBON, MJ ;
FLEMING, MA ;
ITOH, S ;
LIVINGSTON, DJ ;
NAVIA, MA ;
THOMSON, JA ;
WILSON, KP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (05) :1964-1968
[7]   THE BINDING OF CELLULOMONAS-FIMI ENDOGLUCANASE-C (CENC) TO CELLULOSE AND SEPHADEX IS MEDIATED BY THE N-TERMINAL REPEATS [J].
COUTINHO, JB ;
GILKES, NR ;
WARREN, RAJ ;
KILBURN, DG ;
MILLER, RC .
MOLECULAR MICROBIOLOGY, 1992, 6 (09) :1243-1252
[8]  
COUTINHO JB, 1993, FEMS MICROBIOL LETT, V113, P211, DOI 10.1016/0378-1097(93)90271-3
[9]   Stability and oligosaccharide binding of the N1 cellulose-binding domain of Cellulomonas fimi endoglucanase CenC [J].
Creagh, AL ;
Koska, J ;
Johnson, PE ;
Tomme, P ;
Joshi, MD ;
McIntosh, LP ;
Kilburn, DG ;
Haynes, CA .
BIOCHEMISTRY, 1998, 37 (10) :3529-3537
[10]   Binding of the cellulose-binding domain of exoglucanase Cex from Cellulomonas fimi to insoluble microcrystalline cellulose is entropically driven [J].
Creagh, AL ;
Ong, E ;
Jervis, E ;
Kilburn, DG ;
Haynes, CA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (22) :12229-12234